Пассивный и активный транспорт веществ
ЧЕРЕЗ МЕМБРАННЫЕ СТРУКТУРЫ.
Различают активный и пассивный перенос (транспорт) нейтральных молекул и ионов через биомембраны. Активный транспорт - происходит при затрате энергии за счет гидролиза АТФ или переноса протона по дыхательной цепи митохондрий. Пассивный транспорт не связан с затратой клеткой химической энергии: он осуществляется в результате диффузии веществ в сторону меньшего электрохимического потенциала. Примером активного транспорта может служить перенос ионов калия и натрия через цитоплазматические мембраны К - внутрь клетки, а Na - из нее, перенос кальция через саркоплазматического ретикулума скелетных и сердечных мышц внутрь везикул ретикулума, перенос ионов водорода через мембраны митохондрий из матрикса - наружу: все эти процессы происходят за счет энергии гидролиза АТФ и осуществляются особыми ферментами - транспортными АТФ-фазами. Наиболее известный пример пассивного транспорта - это движение ионов и калия через цитоплазматическую мембрану нервных волокон при распространении потенциала действия.
Пассивный перенос веществ через биомембраны.
Диффузия незаряженных молекул.
Принято различать следующие типы пассивного переноса веществ (включая ионы) через мембраны:
1. Простая диффузия
2. Перенос через поры (каналы)
3. Транспорт с помощью переносчиков за счет:
а) диффузии переносчика вместе с веществом в мембране (подвижный переносчик);
б) эстафетной передачи вещества от одной молекулы переносчика к другой, молекулы переносчика образуют временную цепочку поперек мембраны.
Перенос по механизму 2 и 3 называют иногда облегченной диффузией.
Для проницаемости вещества через мембраны, например для диффузии кислорода в клетку, большое значение имеет его диффузия не только через саму мембрану, но и через неподвижные слои воды, примыкающие к мембране. Вещество должно преодолеть три диффузионных барьера: первый примембранный слой воды, сама мембрана и второй примембранный слой воды.
В стационарном состоянии по закону Фика потоки через эти три слоя равны ФН = ФМ = ФВ = Ф, получаем для стационарного состояния:
но СН – СВ = Ф/Р, где Р - проницаемость системы в целом. Откуда:
Назовем велечину I/P - сопротивление потоку веществ. Очень важно, что эта величина для примембранных слоев воды пропорциональна толщине этих слоев.
где DB - коэффициент диффузии вещества в воде.
Электродиффузия ионов.
Современная теория показывает, что напряженность электрического поля внутри мембраны (то есть ) постоянная, а поэтому в уравнении вместомы можем написать, где - мембранный потенциал, а l - толщина мембраны:
Если ввести безразмерный потенциал: , а также заменить СМВи СМН на концентрации иона в водной фазе
где k - коэффициент распределения иона, то получим выражение:
где P - коэффициент проницаемости.
Пассивный транспорт веществ через
посредство переносчика.
В простейшем случае перенос через поры в довольно широких пределах не зависит от концентрации переносимого вещества и описывается обычным электродиффузионным уравнением. Эффективный коэффициент проницаемости P в этом случае зависит от числа каналов на 1 м2 площади мембраны , радиуса канала r и коэффициента диффузии вещества в воде D:
где l - длина канала, очевидно, равная или близкая к толщине мембраны.
Транспорт ионов через посредство подвижного переносчика имеет совершенно другой механизм, то есть он определяется диффузией через мембрану комплекса переносчика с ионом (веществом) в одном направлении (сS) и диффузией свободного переносчика (С) - в противоположном направлении.
Для потока в случае пассивного транспорта получаем:
где [S1] и [S2] - концентрация субстратов по две стороны мембраны, а K - константа диссоциации комплекса вещества с переносчиком. Максимальная скорость переноса пропорциональна общей концентрацииС и коэффициенту диффузии D переносчика в мембране:
Физический смысл величины - максимальная величина потока.
Поскольку величина Ф зависит от общей концентрации переносчика в мембране С и коэффициента его диффузии в мембране D, связывание переносчика ингибиторами, равно как и увеличение вязкости мембраны , уменьшает проницаемость мембраны для вещества. Оба эти эффекта вносят вклад в патогенез целого ряда заболеваний.
Одна из особенностей проницаемости биологических мембран - это избирательность, то есть значительная разница в коэффициентах проницаемости для разных молекул и ионов. Эта избирательность связана в случае простой диффузии с коэффициентом распределения K, а в случае облегченной диффузии - с избирательностью каналов и переносчиков.
Наиболее подробно это явление изучено для случая переноса
ионов так называемыми ионофорными антибиотиками: валиномицином,
энниатинами, нактинами и другими.
МОЛЕКУЛЯРНЫЙ МЕХАНИЗМ АКТИВНОГО
ПЕРЕНОСА ИОНОВ.
Известны четыре основных системы активного транспорта ионов в живой клетке, три из которых обеспечивают перенос ионов натрия, калия, кальция и протонов через биологические мембраны за счет энергии гидролиза АТФ в результате работы специальных ферментов переносчиков, которые называются транспортными АТФ-азами. Четвертый механизм - перенос протонов при работе дыхательной цепи митохондрий - пока изучен недостаточно. Наиболее сложно из транспортных АТФ-аз устроена Н+ - АТФ-аза, состоящая из нескольких субъединиц, самая простая – Са2+ АТФ-аза, состоящая из одной полипептидной цепи (субъединицы) с молекулярной массой около 100000. Рассмотрим механизм переноса ионов кальция этой АТФ-азой.
Первый этап работы Са2+ АТФ-зы - связывание субстратов: Са2+ и АТФ в комплексе с Мg2+ (Мg АТФ). Эти два лиганда присоединяются к различным центрам на поверхности молекулы фермента, обращенной наружу пузырька саркоплазматического ретикулума (СР).
- Взаимодействие ионизирующего излучения с веществом
- Величина лпэ в кэВ/мкм зависит от плотности вещества.
- Относительная биологическая эффективность различных видов излучений
- Физико-химические основы биологического действия ионизирующего излучения. Защита от ионизирующих излучений
- Ионизационные потери
- Тормозное и черенковское излучения
- Прямое и косвенное действие излучений на мишени в клетках
- Первичные продукты радиолиза воды и их взаимодействие с биомолекулами
- Дифференциальное уравнение гармонического колебания.
- Уравнение для смещения, скорости и ускорения колеблющейся точки.
- Энергия при гармоническом колебании.
- Таким образом, полная энергия гармонического колебания оказывается постоянной в отсутствие сил трения. Сложение гармонических колебаний, направленных по одной прямой.
- Сложное колебание и его гармонический спектр.
- Сложение взаимно-перпендикулярных колебаний.
- Затухающие колебания.
- Уравнение волны.
- Эффект доплера.
- Акустика.
- Природа звука.
- Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- Физические основы звуковых методов исследования в клинике.
- Голография
- Дифракция света. Дифракция на щели в параллельных лучах.
- Дифракция решётки. Дифракционный спектр.
- Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы. Связь мощности дозы и активности. Дозиметрические приборы.
- Внесистемная – рад
- Детекторы ионизирующего излучения. Ионизационные камеры.
- Газоразрядные счетчики. Фотографические сцинтилляционные,
- Полупроводниковые и черенковские детекторы.
- Авторадиография.
- Импульсный сигнал и его параметры.
- Генераторы импульсных (релаксационных) электрических колебаний. Мультивибратор. Блокинг-генератор.
- Дифференцирующая и интегрирующая цепи: принципиальная схема, зависимость формы выходного импульса от длительности входного и постоянной времени цепи.
- Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей. Типы и устройство кардиостимуляторов.
- Дефибрилляторы.
- Магнитные моменты электрона, атома и молекулы.
- Магнитные свойства вещества.
- Аппарат терапии переменным магнитным полем.
- Физические основы магнитокардиографии.
- Мембранные потенциалы и их ионная природа.
- Диффузия. Пассивный перенос неэлектолитов через биомембраны, уравнение Рика. Транспорт неэлектролитов через мембраны путем простой и облегченной (в комплексе с переносчиком) диффузии.
- Механические свойства биологических тканей.
- Вязкоупругие, упруговязкие и вязкопластичные
- Системы. Механические свойства мышц, костей,
- Кровеносных сосудов, лёгких
- Задачи, объекты и методы биомеханики.
- Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.
- Эргометрия. Механические свойства тканей организма.
- Микроскоп. Формула для увеличения.
- Разрешающая способность. Значение апертурного угла. Формула для предела разрешения.
- Ультрафиолетовый микроскоп.
- Иммерсионные системы.
- Полезное увеличение.
- Специальные приемы микроскопии:
- Основные характеристики ядер атомов.
- Радиоактивность. Основной закон радиоактивного распада. Активность.
- Ядерные реакции. Методы получения радионуклидов.
- Пассивный и активный транспорт веществ
- Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.). Второй этап работы фермента - гидролиз атф. При этом происходит образование энзим - фосфатного комплекса (е-р).
- Перенос кальция из области меньшей (1-4 х 10-3 м) в область больших концентраций (1-10 х 10-3 м) - это и есть та работа, которую совершает Са - транспортная атФаза в мышечных клетках.
- Проницаемость.
- Поляризация света.
- Поляризация при двойном лучепреломлении. Поляризационные устройства.
- Вращение плоскости поляризации (оптическая активность).
- Дисперсия оптической активности. Использование поляризованного
- Света в медико-биологических исследованиях: поляриметрия
- (Сахариметрия), спектрополяриметрия, поляризационный микроскоп.
- Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- Первичное действие постоянного тока на ткани организма.
- Гальванизация.
- Лечебный электрофорез.
- Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- Первичное действие постоянного тока на ткани организма.
- Гальванизация.
- Лечебный электрофорез.
- 1. Механические волны, их виды и скорость распространения.
- Уравнение волны.
- Акустика. Природа звука. Физические характеристики звука. Тоны и шумы.
- Физические характеристики звука. Тоны и шумы.
- Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха.
- Поглощение и отражение звуковых волн. Реверберация.
- Физические основы звуковых методов исследования в клинике.
- 2. Механические колебания: гармонические, затухающие и вынужденные колебания.
- Дифференциальное уравнение гармонического колебания.
- Энергия при гармоническом колебании.
- Затухающие колебания.
- Вынужденные колебания. Резонанс.
- Автоколебания.
- Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных. Сложение гармонических колебаний, направленных по одной прямой.
- Сложное колебание и его гармонический спектр.
- Сложение взаимно-перпендикулярных колебаний.
- Ультразвук. Методы получения и регистрации.
- Источники и приемники акустических колебаний и ультразвука.
- Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.
- Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.
- Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
- Вибрации, их физические характеристики
- Ударные волны.
- Модель Вольтера
- Модель, представляющая сердечно-сосудистую систему как электрическую цепь. Чисто резистивная модель
- 1.1.2.5. Модели электрической активности сердца
- 1. Основные понятия гидродинамики. Условие неразрывности струи
- Уравнение Бернулли.
- Внутреннее трение (вязкость) жидкости. Формула Ньютона.
- Ньютоновские и неньютоновские жидкости.
- Методы определения вязкости жидкости.
- Реологические свойства крови, плазмы и сыворотки. Факторы, влияющие на вязкость крови в организме.
- Фотоэффект.