34.Принципы современной физики (симметрии, соответствия, дополнительности и соотношения неопределённостей, суперпозиции).
Динамические и статистические законы.
Принцип симметрии.
Принцип симметрии в физике – это свойство физических величин, детально описывающих поведение систем, оставаться неизменными (инвариантными) при определённых преобразованиях, которым могут быть подвергнуты входящие в них величины.
Принципы симметрии связаны с законами сохранения. Виды симметрии:
1. Пространственно-временные (внешние) принципы симметрии.
1.1. Сдвиг времени, т.е. все моменты времени равноправны, т.е. любой можно взять за начало отсчёта времени, т.е. время однородно.
2. Внутренние принципы симметрии.
Описывают свойства элементарных частиц. Отсюда вытекает закон сохранения энергии.
2.1. Сдвиг системы отсчёта, т.е. равноправие всех точек пространства, отсюда вытекает закон сохранения импульса.
2.3. Поворот системы отсчёта, т.е. свойства пространства одинаковы по всем направлениям (пространство изотропно), отсюда вытекает закон сохранения момента импульса.
Также имеет место целый ряд симметрий, действующих в микромире. Они описывают различные аспекты взаимопревращений элементарных частиц и лежат в основе таких законов сохранения, как закон сохранения электрического заряда, барионного и лептонного зарядов и ряда других законов, открытых в последнее время. Таким образом, XX в. подтвердил огромную роль принципа симметрии в физике.
Принцип соответствия.
Принцип соответствия был сформулирован Н. Бором в 1923 г., когда физики столкнулись с ситуацией, что рядом со старыми, давно оправдавшими себя теориями (например, с механикой Ньютона), появились новые теории (теория относительности Эйнштейна), описывающие ту же область действительности. Принцип соответствия утверждает преемственность физических теорий, в частности, то, что никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.
Поэтому теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, но сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.
Каждая физическая теория как ступень познания является относительной истиной. Смена физических теорий — это процесс приближения к абсолютной истине, процесс, который не будет никогда полностью завершен из-за бесконечной сложности и разнообразия окружающего нас мира. Таким образом, принцип соответствия отражает объективную ценность физических теорий.
Принцип дополнительности и соотношения неопределённостей.
Принцип дополнительности является основополагающим в современной физике. Он был сформулирован в 1927 г. Н. Бором для объяснения феномена корпускулярно-волнового дуализма.
Прежде всего, Бор обратил внимание на то, что все предметы и явления, которые мы видим вокруг себя, и, конечно, измерительные приборы для регистрации элементарных частиц состоят из огромного множества микрочастиц. Иными словами, они являются макроскопическими системами, ничем иным они быть не могут. Сам человек — существо макроскопическое. Поэтому наши органы чувств не воспринимают микропроцессов. Понятия, которыми мы пользуемся для описания предметов и явлений окружающего мира, — это макроскопические понятия. С их помощью можно легко описать любые физические процессы, проходящие в макромире. Вместе с тем применить эти понятия для описания микрообъектов полностью нельзя, так как они неадекватны процессам микромира.
Но других понятий у нас нет и быть не может. Поэтому, чтобы компенсировать неадекватность нашего восприятия и представлений об объектах микромира, нам приходится применять два дополняющих друг друга набора понятий, хотя с точки зрения классической науки они взаимно исключают друг друга, — это понятия частицы и волны. Только в совокупности они дают исчерпывающую информацию о квантовых явлениях.
Частным выражением принципа дополнительности является соотношение неопределенностей, сформулированное В. Гейзенбергом в 1927 г. Этот принцип наглядно иллюстрирует отличие квантовой теории от классической механики.
Если в классической механике мы допускаем, что можно абсолютно точно знать координаты, импульс и энергию частицы в любой момент времени, то в квантовой механике это невозможно. В соответствии с принципом неопределенности, чем точнее фиксирован импульс, тем большая неопределенность будет содержаться в значении координаты, и наоборот. Также соотносятся энергия и время. Точность измерения энергии обратно пропорциональна длительности процесса измерения. Причина этого — во взаимодействии прибора с объектом измерения.
Принцип суперпозиции.
Принцип суперпозиции (наложения) — это допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров принципа суперпозиции является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Этот принцип выполняется при условии, когда воздействующие явления не влияют друг на друга. Поэтому в ньютоновской физике он неуниверсален и во многих случаях справедлив лишь приближенно.
В микромире, наоборот, принцип суперпозиции — фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. Но, к сожалению, в квантовой теории принцип суперпозиции лишен той наглядности, которая характерна для механики Ньютона. Его интерпретируют так: пока не проведено измерение, бессмысленно спрашивать, в каком состоянии находится физическая система. Иными словами, до измерения система находится в суперпозиции двух возможных состояний, т.е. ее состояние неопределенно. Акт измерения переводит физическую систему скачком в одно из возможных состояний.
- 1. Естествознание – предмет и характеристика. Особенности курса ксе.
- 2. Наука – определение. Специфические черты.
- 3.Структура научного познания. Критерии и нормы научности.
- 5. Культура – определение и специфика. Виды культуры.
- Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:
- 7. Характеристика знаний в древнем мире (Вавилон, Египет, Китай).
- 8. Естествознание средневековья (мусульманский Восток, христианский Запад).
- 9. Наука Нового времени (н. Коперник, Дж. Бруно, г. Галилей, и. Ньютон и другие).
- 10. Научные революции эпохи Возрождения.
- 11. Классическое естествознание – характеристика.
- 12. Неклассическое естествознание – характеристика.
- 13. Стадии развития естествознания (синкретическая, аналитическая, синтетическая, интегрально-дифференциальная).
- 14. Древнегреческая натурфилософия (Аристотель, Демокрит, Пифагор и др.).
- 15. Научные методы. Эмпирический уровень (наблюдение, измерение, эксперимент) и теоретический уровень (абстрагирование, формализация, идеализация, индукция, дедукция).
- 16.Научные методы: всеобщий, общенаучный и частнонаучный.
- 17. История развития взглядов на пространство и время в истории науки.
- 18. Пространство и время (классическая механика и. Ньютона и теория относительности а. Эйнштейна).
- 19.Общие и специфические свойства пространства и времени.
- 21. Естественнонаучная картина мира: физическая картина мира (механическая, электромагнитная, современная – квантово-релятивистская).
- 22.Принципиальные особенности современной естественнонаучной картины мира.
- 23. Структурные уровни организации материи (микро-, макро- и мегамир).
- 24.Макромир: концепции классического естествознания
- 25. Микромир: концепции современной физики.
- 26. Мегамир: современные астрофизические и космологические концепции
- 27. Вещество и поле. Корпускулярно-волновой дуализм.
- 28. Корпускулярная и континуальная концепции описания природы.
- 29. Элементарные частицы: классификация и характеристика.
- 30. Понятие взаимодействия. Концепция дальнодействия и близкодействия.
- 31. Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое).
- 32. Основы квантовой механики: открытия м. Планка, н. Бора, э. Резерфорда, в. Паули, э. Шрёдингера и др.
- 33. Динамические и статистические законы.
- 34.Принципы современной физики (симметрии, соответствия, дополнительности и соотношения неопределённостей, суперпозиции).
- 35.Закон возрастания энтропии: 1 и 2 законы термодинамики. Энтропия мера хаоса.
- 4. Релятивистская модель Вселенной.
- 5. Модель Большого взрыва.
- 6. Модель расширяющейся Вселенной.
- 37. Внутреннее строение Земли. Геологическая шкала времени.
- 38. История развития концепций геосферных оболочек Земли. Экологические функции литосферы.
- 41. Основные законы химии. Химические процессы и реакционная способность веществ.
- 42.Равновесие в химических реакциях (Принцип Ле-Шателье ). Закон возрастания энтропии.
- 43. Биология в современном естествознании. Характеристика «образов» биологии (традиционная)
- Традиционная, или натуралистская биология.
- 44.Характеристика «образов» биологии (физико-химическая)
- 1) Метод меченых атомов.
- 2) Методы рентгеноструктурного анализа и электронной микроскопии.
- 3) Методы фракционирования.
- 4) Методы прижизненного анализа.
- 5) Использование эвм.
- 45.Характеристика «образов» биологии (эволюционная)
- 46. Концепции происхождения жизни на Земле (креационизм, самопроизвольное (спонтанное) зарождение, теория стационарного состояния, теория панспермии и теория биохимической эволюции).
- 1. Креационизм.
- 2. Самопроизвольное (спонтанное) зарождение.
- 3. Теория стационарного состояния.
- 4. Теория панспермии.
- 5. Теория биохимической эволюции.
- 47. Признаки живых организмов. Характеристика форм жизни (вирусы, бактерии, грибы, растения и животные).
- 48. Структурные уровни организации живой материи.
- 49. Происхождение и этапы эволюции человека как биологического вида.
- 50. Клеточная организация живых систем (структура клетки).
- 1. Животная клетка:
- 2. Растительная клетка:
- 51. Химический состав клетки (элементарный, молекулярный – неорганические и органические вещества).
- 52. Биосфера – определение. Учение в. И. Вернадского о биосфере.
- 53. Система: природа - биосфера – человек.
- 54.Влияние природы на человека (географическая среда). Влияние человека на природу (техносфера).
- 56. Понятие о живом веществе биосферы. Функции живого вещества в биосфере.
- 57. Ноосфера – определение и характеристика. Этапы и условия становления ноосферы.
- 58.Ресурсная и биосферная модели развития биосферы.
- 59.Модель устойчивой мировой системы. Законы экологии.
- 60. Физиология человека. Характеристика физиологических систем человека (нервная, эндокринная, сердечно-сосудистая, дыхательная, выделительная и пищеварительная).
- 61. Концепция здоровья. Условия ортобиоза.
- 62.Валеология – понятие
- 64.Эмоции, творчество и работоспособность.
- 65. Кибернетика (исходные понятия). Качественная характеристика информации.
- 66. Концепции самоорганизации: синергетика.
- 67.Принципы синергетики
- 68.Интеллект и искусственный разум.
- 69.Искусственный разум: перспективы развития.
- 70.Космические циклы: Гелиобиология и селенобиология.