52. Обмен циклических аминокислот фенилаланина и тирозина
Фенилаланин является незаменимой аминокислотой, а тирозин - заменимая аминокислота.
Фенилаланин вступает в незначительное количество превращений в тканях. Кроме включения этой аминокислоты в структуру молекул белка, единственным путем метаболизма фенилаланина у здорового человека является его окисление в тирозин с участием фермента микросомального окисления, специфической монооксигеназой - фенилаланингидроксилазой:
Тирозин вступает в многочисленные реакции в различных тканях. В результате этих превращений тирозин не только распадается до конечных продуктов, но и дает промежуточные метаболиты, из которых образуются ряд важных соединений, некоторые из которых являются биологически активными веществами.
Из тирозина образуются:
а) гормоны мозгового слоя надпочечников адреналин и норадреналин,
б) меланины - пигменты кожи, волос, радужной оболочки глаза,
в) йодсодержащие гормоны щитовидной железы - тироксин и трийодтиронин.
НАРУШЕНИЯ ОБМЕНА ФЕНИЛАЛАНИНА И ТИРОЗИНА
Нарушения обмена этих АК связано с нарушением биосинтеза некоторых ферментов, которые катализируют метаболические превращения этих АК. Результатом нарушения синтеза ферментов является возникновение наследственных генетических заболеваний:
1) фенилкетонурия - нарушен синтез фенилаланин-гидроксилазы, поэтому фенилаланин превращается в фенилпируват, который оказывает токсическое воздействие на развитие некоторых отделов головного мозга.
2) альбинизм - нарушен синтез ферментов, превращающих ДОФА в ДОФА-хром, поэтому нарушается синтез меланинов.
3) алкаптонурия - нарушен синтез диоксигеназы гомогентизиновой кислоты, она выделяется с мочой, моча приобретает черный цвет.
4) кретинизм - нарушен синтез йодиназы, что приводит к нарушению синтеза йодсодержащих гормонов щитовидной железы.
5) может быть нарушен синтез фермента тирозиназы, который катализирует превращение тирозина в ДОФА, следовательно будет нарушаться синтез гормонов мозгового слоя надпочечников и меланина.
Из всех этих заболеваний в настоящее время удается лечить фенилкетонурию, для этого из рациона ребенка исключают фенилаланин и увеличивают в пище количество тирозина. Если ребенка держать на этой диете до 6-7 лет, тогда не возникает умственная отсталость, т.к. к 6-7 годам успевают развиться отделы головного мозга, развитие которых задерживается при избытке в ткани мозга фенилпирувата.
53. Нуклеопротеины – это сложные белки, небелковым компонентом которых являются нуклеиновые кислоты – ДНК (дезоксирибонуклеиновая кислота) или РНК (рибонуклеиновая кислота). В живом организме нуклеиновые кислоты находятся в диссоциированном состоянии. В составе белковых компонентов очень много положительно заряженных аминокислот – аргинина и лизина, поэтому их можно отнести к поликатионам (гистоны). Белковые компоненты подвергаются обмену, как простые белки.
Переваривание нуклеотидов и всасывание продуктов их распада происходит в ЖКТ. Под влиянием белковых ф-ов и соляной к-ты нуклеопротеиды расподаются на белок и н.к.. За тем белки расподаются до а.к.. Распад н.к. осущ. В основном гидролитическим путем в тонком кишечнике под действием ДНК-азы и РНК-азы поджелудочного сока. Продуктами р-и под действием РНК-азы явл-ся пиримидиновые мононуклеотиды, ди- и тринуклеотиды и РНК-аза – резистентные олигонуклеотиды. Под действием ДНК-азы образуются в основном динуклкотиды, олигонуклеотиды и немного мононуклеотидов.Полный гидролиз осуществляется ф-ми слизистой кишечника.
54. Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый СИНТЕ
синтез ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)
Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантинмононуклеотид.
Пуриновое кольцо строится из СО2, аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.
Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.
Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.
Серин: тоже является донором одноуглеродного радикала.
ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин
Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.
На второй стадии фосфорибозиламин взаимодействует с глицином.
Третья стадия - включение углеродного атома, донором которого является глицин или серин.
Затем достраивается шестичленный фрагмент пуринового кольца:
4-ая стадия - карбоксилирование с помощью активной формы СО2 при участии витамина Н - биотина.
5-ая стадия - аминирование с участием аминогруппы из аспартата.
6-ая стадия - аминирование за счет аминогруппы глутамина.
7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ. Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.Далее из НМФ образуются НДФ и НТФ с помощью АТФ. Затраты АТФ на синтез нуклеотидов de novo очень велики. Этот способ синтеза является энергетически невыгодным.В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов. Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.
- 9. Автономная саморегуляция ферментативных процессов
- 10. Характеристика конкурентных ингибиторов
- 11. Классификация ферментов
- I класс - оксидоредуктазы.
- II класс - трансферазы
- 1.СтРоение и свойства белков.
- Первичная структура
- Вторичная структура
- Третичная структура
- 7.Первичная структура
- Вторичная структура
- 3.Третичная структура
- 3. Денатурация
- Обратимость денатурации
- Белки стресса
- 14. Биологическое значение цтк
- 17,18. Митохондриальное окисление (МтО).
- 15,16.Внемитохондриальное окисление
- I. Окисление оксидазного типа.
- 20,21.Активные формы кислорода
- 22. Антиоксидантная система.
- 1. Ферментативная
- 2. Неферментативные компоненты антиоксидантной системы
- 23. Углеводы.
- 24. Переваривание
- 26.Синтез и распад гликогена.
- 32. Гормональная регуляция метаболизма углеводов гормональная регуляция энергетического метаболизма.
- 29. Жирные кислоты
- 38. Липопротеины
- 40. Липогенез.
- 43.Адреналин
- 45 Переваривание и всасывание белков в желудочно-kишечном тракте
- 48. Катаболизм аминокислот.
- 49. Трансаминирование
- 50.Обезвреживание аммиака. Синтез мочевины (орнитиновый цикл).
- 51. Декарбоксилирование
- 52. Обмен циклических аминокислот фенилаланина и тирозина
- 55. Синтез пиримидиновых мононуклеотидов.
- 71. Витамин рр (антипеллагрический)
- 72. Витамин в6 (пиридоксин).
- 73. Фолиевая кислота (вc)
- 75. Витамин “а” ( ретинол, антиксерофтальмический)
- 76. Витамин д (холекальциферол, антирахитный)
- 77. Витамин к (филлохинон).
- 78. Витамин е (токоферол, витамин размножения).
- 90. Глюкокортикостероиды (гкс).
- 91. Йодсодержащие гормоны щитовидной железы.
- 92. Биохимия крови.
- 93. Состав плазмы крови:
- 96. Белковые компоненты плазмы крови
- Альбумины
- Глобулины
- 97. Система свертывания крови и фибринолиза.
- 103. Система регуляции сосудистого тонуса
- 107,108.Волокна соединительной ткани
- 111. Факторы, влияющие на обмен кальция и фосфора
- 1. Клиренс ингалируемых частиц
- 2. Мукоциты
- 3. Поверхностные эпителиоциты
- 4. Неспецифические элементы противовирусной защиты (4)
- 1. Rantes
- 2. Интерферон- (ifn)
- 122. Газообмен
- 1. Альвеоциты I типа
- 4. Альвеолярный клиренс
- 3. Альвеолярные макрофаги
- 123. II. Газообмен
- III. Альвеолы (2)
- 1. ENaC
- 3. Адреналин
- 4. Кортизол и альдостерон
- 6. Супероксид и гипоксия
- 7. Сурфактант
- 3. Альвеолярные макрофаги
- 4. Альвеолярный клиренс
- 124. 1. Клиренс ингалируемых частиц
- 1. Реология слизи
- 2. Адгезивность слизи