logo
allbest-r-00051009 / 51009

Этапы развития естественно-научного мышления. История естествознания

Считается, что науки, составляющие естествознание, зародились в Древней Греции. Предшествующий этому период в развитии культуры можно назвать мифологическим.

Древние философские системы носили крайне наивный характер. Индийцы, халдеи, египтяне до науки о природе дойти не сумели. Религиозно-мистические воззрения не могли породить идею о естественной закономерности явлений.

Значительно глубже и последовательней осмысливали мир философы античной Греции. Вот почему древняя физика является почти целиком физикой греков.

Наука зародилась тогда, когда люди, осмысливая и систематизируя накопленный опыт, стали искать объяснения природы в ней самой.

Первый греческий физик Фалес Милетский (640-550 до н.э.), родоначальник античной философии, основатель милетской школы, возводил все многообразие явлений и вещей к воде: “Начало всех вещей - вода, из воды все происходит и все возвращается к воде”.

Анаксимандр (610-547 до н.э.), представитель милетской школы, - началом начал считал некое первичное вещество, апейрон, качественно неопределенное и бесконечное, из которого выделяются первоначальные противоположности тепла и холода, сухости и влажности.

Анаксимен (ок. 585 - ок. 525 до н.э.), представитель милетской школы первоосновой всего считал воздух, из сгущения или разрежения которого возникают все вещи.

В основе учения натурфилософов ионийской школы лежит единое первоначальное вещество, которое превращается во все другие вещества и порождает весь видимый мир. (Очевидна генетическая связь с современными представлениями о едином поле).

Пифагорейцы (Пифагор Самосский (582-500 до н.э.) выдвигали на передний план не столько первоначальное вещество, сколько распределение вещей в природе, их число и меру. Мистическое числовое учение впоследствии слилось с астрологией. Математическая теория Пифагора мало чем обогатила науку. Однако пифагорейцы первые выдвинули идею о шарообразности Земли. При этом они не опирались на какие-либо эмпирические данные. Идея основывалась на требованиях геометрической гармонии: Земле придали наиболее совершенную форму. В центре Вселенной пифагорейцы поместили чистейшее из веществ - огонь.

Гераклит из Эфеса (540,530-470 до н.э.), представитель ионийской школы, высказал идею непрерывного изменения (Panta rei): все течет. Никто не входил дважды в один и тот же поток, ибо воды его, постоянно текущие, меняются... Текут наши тела, как ручьи, и материя вечно возобновляется в них, как вода в потоке.

Панта рей. И никто не был дважды в одной и той же реке. Ибо через миг и река не та, и сам он уже не тот.

В основе мироздания лежит огонь: мир был, есть и будет вечно живущее пламя, вечно живой огонь, который самопроизвольно возжигается и угасает.

Война - отец всего, царь всего. Все и происходит и уничтожается в силу раздора. Без борьбы нет противоположностей, без противоположностей нечему соглашаться, нет жизни, мира, гармонии. Все расторгается внутренней враждой и стремлением к высшему единству дружбы и гармонии.

Анаксагор (500-428 до н.э.) выдвинул учение о неразрушимых элементах. На надгробии ему написано: “Здесь покоится Анаксагор, который достиг крайнего предела истины, познав устройство Вселенной”.

Главное сочинение Анаксагора “О природе”. Он не признает превращения вещества при видоизменении предметов, считая, что такое видоизменение происходит от соединения и разъединения мельчайших, невидимых глазу частиц материи.

Обычно книги по атомной физике начинаются с упоминания об атомах Демокрита. Но ведь это только развитие идеи Анаксагора. Более того, он даже на много веков предвосхитил закон сохранения массы, лежащий в фундаменте современного естествознания:

Греки ошибочно полагают, что будто что-либо начинается или прекращается; все сводится к сочетанию или разъединению вещей, существовавших от века. Вернее было бы признать возникновение сочетанием, а прекращение разъединением”.

В основе учения Анаксагора лежало представление о духе. Вначале Вселенная представляла собой хаос элементов, и только дух, разум соединил между собой незримые частицы. Дух Анаксагора противоположен материи.

Идея Анаксагора вылилась в более строгие формы в учении Эмпедокла (492-432 до н.э.). Подобно своему учителю он пишет книгу “О природе”, в которой высказывает свое кредо: “Безумцы полагают, что может возникнуть что-либо никогда не бывшее или погибнуть, исчезнуть без следа что-либо существующее. Я постараюсь открыть вам истину. В природе нет возникновения того, что может умереть; нет полного уничтожения; ничего, кроме смешения и разъединения сочетанного. Только невежды называют это рождением и смертью”.

У Эмпедокла четыре стихии: земля, вода, воздух и огонь, т.е. три агрегатных состояния вещества и энергия. Стихии Эмпедокла неизменны и неспособны возникнуть одна от другой. Они вступают полностью или частями в различные комбинации друг с другом. В результате получаются все “вещи” Вселенной, которые в свою очередь подвержены дальнейшему смешению и разделению.

Левкипп (около 500 г. до н.э.) создал атомистическую теорию мира, которая впоследствии была развита и закончена Демокритом (род. ок. 470 г.до н. э.)

Вселенная Демокрита - Левкиппа состоит из пустого пространства и бесконечного множества неделимых мельчайших частиц - атомов, отличающихся не качественно (как у Анаксагора), а лишь по своему очертанию, положению и распределению. Тела возникают и исчезают только за счет сочетания и разъединения атомов, так из ничего не может произойти ничего и ничто существующее не может исчезнуть. Движение атомов обусловлено не влиянием внешней силы, а силой, присущей самим атомам.

С такой общей схемой согласится любой физик. Но в отличие от Демокрита он сумеет доказать, что мир построен именно так, а не иначе.

Согласно Платону (429-347 до н.э.) в центре Вселенной неподвижно покоится Земля, вокруг которой на расстояниях, соответствующих гармоническими отношениям тонов, проплывают планеты.

Мир видимый, мир чувственный есть собственно мир призрачный, мир теней. Этому миру Платон противопоставляет мир идей - идею человека, животного, растения, камня. Эти идеи - не только родовые понятия, но и подлинно существующее бытие. Не будь идей, не было бы и конкретно существующих вещей. Эти последние - отображения, копии отвечающих им идей, а идеи - первообраз, причина существования отображений.

Если Демокрит был убежден в дискретности материи, то Аристотель (384-322 до н.э.) проповедовал обратное - ее непрерывность. Этот великий спор прошел сквозь всю историю естествознания, не закончился он и по сей день.

Под природой Аристотель понимал совокупность физических тел, состоящих из вещества и находящихся в состоянии непрерывного движения или изменения. Всякое движение протекает во времени и пространстве. Пространство сплошь заполнено материей. Поэтому нет ни пустоты, ни мельчайших неделимых частиц - атомов, которые бесконечно падают в этой пустоте.

В основе всего сущего лежит первоматерия. Ей присущи четыре основных свойства: влажность, сухость, тепло и холод. Разнообразие веществ в природе вызвано различными сочетаниями этих свойств. Изменение одного из свойств - причина любых превращений. Тайна превращения веществ сводится к добавлению одних качеств к другим. Неблагородные металлы можно превратить в золото. Впоследствии алхимики часто ссылались на Аристотеля. Теперь, в век ядерной энергии, мы видим, что он, в сущности, был прав.

Естественные прямолинейные движения тел неравномерны, конечны и потому несовершенны. Совершенство присуще лишь круговому движению, которое протекает вечно. Непосредственной причиной такого движения является пятое начало - эфир, из которого состоит небо. Идея эфира надолго сохранится в физике. Она будет совершенствоваться, видоизменяться, но суть ее останется прежней - неизменной и неощутимой, как сам эфир.

Аристотель гораздо больше философ, чем физик. Он пытался создать целостную картину природы. Он велик своей попыткой вскрыть общее единство мира.

Одним из основных методов познания по Аристотелю является индукция: от фактов, добытых опытом, к некоторым общим определениям и понятиям, при помощи которых можно будет объяснять факты. Общие принципы как исходный пункт для дедуктивного изучения вещей и явлений. Эти общие принципы: материя, форма, движущая причина и причина конечная, или цель. В материи дана лишь возможность реального мира, в форме - осуществление этой возможности путем движений и изменений, идущих к определенной цели.

Материя хаотична, бесформенна; это - бытие абстрактное и потенциальное, а форма - это начало структуры и организации, начало актуальное, переводящее материю в нечто конкретное; она как бы задание, цель, которую надлежит осуществить материи.

Однако об идеях Платона Аристотель сказал так: Говорить, что идеи суть образцы, а прочее в них участвует, значить пустословить и высказывать поэтические метафоры.

Аристотелем заканчивается творческий период греческой натурфилософии. Законченная, внутренне замкнутая система не легко поддавалась дальнейшему развитию. Да и авторитет Аристотеля был настолько велик, что мало кто решался на переоценку его учения.

Эпикур (341-270 до н.э.) - атомист, последователь Демокрита, учил, что познание природы освобождает от страха смерти, суеверий и религии вообще.

Аристарх Самосский (ок. 320 - ок. 250 до н.э.), астроном, учил, что Земля вращается вокруг неподвижного Солнца. На возражение, что при таком вращении неподвижные звезды должны были бы изменить свое видимое положение, он, с полным на то основанием, указывал на громадное расстояние между Солнцем и звездами. В этом смысле он был предтечей не только Коперника, но и Эйнштейна. Но гелиоцентрическая система не имела еще достаточных основ, она была явно преждевременной. Геоцентризм настолько всех удовлетворял, что лучшие астрономы того времени не поддержали Аристарха. Его учение было основательно забыто.

Тит Лукреций Кар (I в. до н.э.) Поэма “О природе вещей” был в нашем понимании популяризатором науки. Тем не менее его роль в развитии атомистики трудно переоценить. Может быть здесь сказывается сила искусства, его условность, столь отличная от научных абстракций и аналогий, но Лукреций во все эпохи звучит одинаково современно.

“...Платье сыреет всегда, а на солнце вися, оно сохнет, Видеть, однако, нельзя, как влага на нем оседает, Как и не видно того, как она исчезает от зноя. Значит, дробится вода на такие мельчайшие части, Что недоступны они совершенно для нашего глаза”. Небольшой отрывок из поэмы показывает не столько то, что думали древние, а как они думали. Это образец ясной логики, приводящей к однозначному выводу.

Идеи поэмы: Все тела природы состоят из атомов и подвержены изменениям. Вселенная бесконечна - “Стрела, пущенная луком, может лететь века и быть все так же далеко от конца Вселенной, как в первое мгновение, когда она была пущена”.

Жизнь возможна на других мирах -

“А потому непременно ты должен со мной согласиться, Что существуют иные земные миры во вселенной, Как и иной род людей и иные породы животных...”

Природа никем не создана и управляется присущими ей самой законами - Из ничего даже волей богов ничего не творится. Люди приписывать склонны божественной воле те вещи, В коих не могут рассудком своим доискаться причины. Если усвоил ты это, должна пред тобою природа Вечно свободной предстать, не подвластной властителям гордым, Движимой волей своей, от богов независимой вовсе.

Птоломеем (70-147) заканчивается античный период истории естествознания.

В тринадцати книгах Птоломей собрал и обобщил все достижения древней астрономии. Но принципиально птоломеевская система мира с неподвижной Землей в центре Вселенной мало чем обогатила науку.

Авторитет его был признан единодушно и держался долее всего. Греки, римляне, арабы и христиане одинаково чтили его. Не один еретик сгорел на костре за посягательство на птоломеевский “Общий обзор”. Несколько столетий католическая церковь отстаивала учение Птоломея всеми принятыми на вооружение средствами.

Большую роль в развитии естествознания сыграли Фрэнсис Бэкон (1561-1626) и Рене Декарт (1596-1650).

Бэкон: природу нельзя познать без опыта - самого ценного источника знаний.

Декарт ключом к истинному знанию считает разум, умело нацеленный на исследование опять-таки данных опыта. Опыт, опыт и еще раз опыт. Это звучало как заклинание мрачных теней средневековья.

Природа Декарта сплошь заполнена материальными частичками. Духовное начало ее не зависит от материального. Основное свойство материи -протяженность. Пустого пространства не существует. Материальный мир находится в вечном движении, совершающемся в полном соответствии с законами механики. Отсюда и все процессы в природе можно свести к простому перемещению частиц в пространстве. Декарт выдвигает идею первончального толчка, который привел в движение бесконечную непрерывную протяженность.

Барух Спиноза (1632-77) отверг дуализм Декарта. Природа сама есть бог. Она ни в духовном начале, ни в творце не нуждается. Природа - это вечная субстанция в бесконечном пространстве. Она “причина самой себя” (causa sui). Это важнейшее свойство субстанции - самой быть причиной существования и сущности всех вещей. Это свойство встречается в одной из самых интересных гипотез двадцатого века - нелинейной теории поля Гейзенберга.

Естествознание пошло именно по этому пути. Самые фундаментальные представления о строении материи и свойствах времени и пространства базируются на принципе “natur causa sui”.

Первым исследователем, который всерьез обратился к идеям греческих атомистов, был французский философ-материалист Гассенди (1592-1655).

Он не только изложил древнюю атомистику, но и развил ее на основе накопленных за два тысячелетия фактов. Подобно Эпикуру, он считал важнейшими свойствами атомов не только величину и форму, но и тяжесть, которую определял как “внутреннее стремление к движению”, служащее источником всех изменений в природе.

Интересно, что именно Гассенди впервые выдвигает идею о различных прерывистых дискретных ступенях строения материи. Он ввел понятие молекулы - механического соединения группы атомов.

Разрабатывая учение греческих атомистов, Гассенди пришел к мысли, что при помощи атомной теории физические явления можно объяснить конкретным, даже банальным способом. Смесь воды и вина сравнивается им со смесью двух сортов песка.

Англичанин Роберт Бойл (1627-1691) был физиком и химиком в самом современном понимании этих слов. Его девизом было “ничего со слов”. Он обрушился с критикой на алхимиков и их методы, показав, что их достижения случайны. На самом деле они ничего не знают и не могут знать о природе вещей.

Бойль впервые обосновал понятие “химический элемент”. У Бойля это понятие строго связано только с химическим процессом. Исходя из химического взаимопревращения веществ, Бойль задался вопросом: из каких кирпичей можно построить все бесконечное многообразие однородных веществ? Вопрос этот до сих пор не снят с повестки дня.

Он хотел найти те элементы, которые уже не могут быть превращены один в другой и из которых каким-то образом построен весь окружающий мир.

Сама постановка задачи выросла из основной проблемы алхимии. Алхимия исходила из того, что все вещества могут быть сведены к одному, основному. Но все попытки алхимиков осуществить подобное превращение терпели крах. С помощью химических методов оно, очевидно, не достигалось. Отсюда напрашивался вывод, что материя не единообразна на химическом уровне, а напротив, существуют вещества, которых никакие химические процессы не заставят взаимопревращаться. В отличие от Демокрита Бойль называл частички, из которых построена материя, не атомами, а корпускулами (Энгельс: “Бойль делает из химии науку”).

Одним из самых важных моментов в становлении современной науки надо признать установления законов движения планет - законов Кеплера. Ближайший предшественник Кеплера, Николай Коперник блестяще завершил работу по созданию гелиоцентрической модели солнечной системы, начатую еще греками (Аристарх Самосский). В модели Коперника оказались установленными все естественные кинематические масштабы - эталоны длин и времени. Это и стало исходным пунктом новой науки. Коперник оставил два столбца чисел - периоды и расстояния и нужно было только спросить, а что связывает числа в этих столбцах?

Такой вопрос задал себе Кеплер, который поставил перед собой цель раскрыть секреты движения планет и научиться вычислять их движения. Он смог установить свой третий закон, в котором содержалась по существу динамика системы, т.е. связь между временем и изменением координации.

Кеплер, впервые для естествоиспытателя, поставил вопрос об общей закономерности в данных эксперимента и, что самое важное, вопрос о том, в чем причина таких закономерностей. До Кеплера большинство естествоиспытателей считало свою роль законченной, если сформулированы правила, описывающие явления. Только Кеплера не удовлетворяли открытые им законы. Он мучительно спрашивал себя: почему? В чем состоит общая причина движения планет? Размышления привели его к заключению, что эту причину надо искать в том, что движением планет управляет Солнце. Этим Кеплер ниспровергал установившуюся картину близкодействия и впервые выдвинул идею дальнодействия. Но полный ответ вопросы Кеплера получили лишь у Ньютона, который звершил создание новой картины мира, основанной на уравнениях механики.

На памятнике Ньютона (1643-1727) в Кембридже выбиты слова: “Разумом он превосходил род человеческий”.

Ньютон открыл закон всемирного тяготения и три основных закона механики, создал теорию движения небесных тел и теорию цветов.

Конечная цель физики по Ньютону: ”Вывести из начал механики и остальные явления природы”.

Понятие массы - гениальный и не подлежащий пересмотру вклад Ньютона в построение основ современной физики. Все материальные тела обладают собственной массой. Материальные частички наделены силами притяжения и отталкивания, присущими всем видимым телам во Вселенной.

Учение Ньютона о массе и силе положило конец метафизике вообще. Поэтому “отцом физики” следовало бы считать именно Ньютона, разработавшего научные основы мироздания вместо фантастических домыслов и спекулятивных гипотез о строении мира.

Три гиганта - Коперник, Кеплер и Ньютон построили новую науку - механику. Механика стала первым лидером только что возникшего в качестве самостоятельной науки естествознания.

Успехи механики в XVII-XVIII вв. были связаны с тем, что она изучала реальную сторону реальных процессов природы. Средневековая схоластика, провозгласившая учение о скрытых качествах, о всякого рода таинственных и неуловимых субстанциях, мешала изучать действительные вещи и их свойства, не давала возможности двигаться вперед в познании природы. Механика впервые поставила естественнонаучное познание на научную основу.

Однако механическая атомистика не объясняла химических взаимодействий, тепловых процессов и других явлений, с которыми химики сталкивались буквально ежечасно.

Немецкий врач Эрнст Шталь постулировал существование “флогистона”, некоего неведомого вещества без цвета и запаха, который соединял бойлевские корпускулы и осуществлял все химические превращения.

Теория флогистона заворожила современников. Она была принята сразу и безоговорочно. В том, что флогистон действительно существует, никто не сомневался. Когда появились первые убедительные факты, ставящие под сомнение теорию флогистона, ее самоотверженно пытались спасти. Теорию флогистона опроверг А.Лавуазье (1743-1794).

Ломоносов (1711-1765) также исключал флогистон из числа химических агентов.

Самым крупным по своему значению достижением Ломоносова было экспериментальное доказательство “закона сохранения материи” (опыт по нагреванию в запаянном сосуде свинцовых пластинок).

Ломоносов связывал нагрев тела с увеличением поступательного и вращательного движения корпускул, что делало совершенно излишним предположение о существовании флогистона.

Ломоносов вплотную подошел к понятию абсолютного нуля, как о “высшей возможной степени холода, вызванной полным покоем частичек, прекращением всякого движения их”. Частички различны по массе и им присуще движение, отсюда причина всех качественных изменений в физике и химии - движение.

Английский материалист XVII века Дж. Толанд предложил считать движение неотделимым от материи внутренним первичным свойством: “Материя по необходимости столь же активна, сколь и протяженна”.

Взгляды Толанда во многом определили эволюцию представления о пространстве, времени и движении. Так, у французских материалистов XVIII века движение тоже выступает непреложным свойством самой материи. Гольбах: “Движение - это способ существования”. Дидро выдвигает чисто релятивистскую идею об абсолютности движения и относительности покоя.

В 1815 г. Проут заявил, что атомы делимы. Он указал на то, что атомные веса элементов кратны атомному весу водорода. Отсюда вытекал неизбежный вывод, что все элементы построены из водорода, атомы которого являются “первыми и последними строительными камнями” Вселенной.

В 1865 г. Лошмидт определил в самом первом приближении размеры атома. Атомы оказались несравненно меньше тех солнечных пылинок, с которыми их сравнивал Демокрит.

Новый этап атомистики начался с Майкла Фарадея (1791-1867), связавшего атомную теорию с электричеством. Электричество, как и вещество, тоже обладает атомной структурой. Каждый атом или каждая молекула связаны с одним или несколькими атомами электричества, хотя в то время трудно было сказать, как такая связь осуществляется.

Честь открытия свободных атомов электричества, не связанных с атомами вещества, выпала Гитторфу. По предложению Стонея мы назваем теперь свободные атомы электричества электронами. Так была открыта первая элементарная частица.

Описывая обмен энергией между нагретым телом и окружающим пространством, Макс Планк предположил, что такой процесс может быть не непрерывным, а дискретным. Он открыл кванты.

Говорят, что Планк долгое время пребывал в растерянности от своего открытия. Идея дискретности подрывала основы классической физики. Он не спешил с опубликованием своей работы. В разговоре с коллегами он как-то обмолвился, что либо полностью провалился, либо сделал открытие, равное по масштабам законам Ньютона.

В 1905 г. Эйнштейн выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из неделимых квантов. Кванты света представляют собой частицы, которые движутся в вакууме со скоростью 300000 км в секунду. В двадцатые годы эти частицы получили название фотонов. Корпускулярная природа света может быть продемонстрирована рядом классических экспериментов, но особенно ярко существование фотонов показывает фотоэлектрический эффект.

Существование электромагнитных волн и волновая природа света не могут быть опровергнуты. Но нельзя отказаться и от корпускулярной природы света. Не с Планком, а именно с Эйнштейном вошла в науку противоречивая двойственность, изначально присущая природе. И естественно, что современники видели в этой двойственности не лик мироздания, а всего лишь необъяснимое противоречие.

Через два десятилетия Луи де Бройль, распространив представления Эйнштейна на все элементарные частицы вообще, построил волновую механику.

Новое мировоззрение включало отказ от эфира, что означало капитуляцию благополучной Вселенной, похожей несколько на сложный часовой механизм с его иерархией зубчатых колесиков.

Понятие эфира зародилось в то время, когда ученые попытались осмыслить природу света.

Автором первой эфирной теории света был голландский математик, астроном и физик Христиан Гюйгенс. Согласно его теории всякое светящееся тело порождает волны, которые, распространяясь во все стороны, достигают глаз наблюдателя. Подобно колебаниям, вызванным звоном колокола. Но если ударить в колокол, находящийся в пустоте, звона не будет. Тогда как свет, в отличие от звука, отлично распространяется в вакууме, несмотря на отсутствие среды, способной передавать колебания. Это обстоятельство заставило Гюйгенса наполнить пустоту неким гипотетическим эфиром, способным передавать волны света.

Эфир означает по-гречески “воздух”, “небо”, “верхние сферы”. Работники радио и телевидения до сих пор говорят о том, что они готовят передачи для “вещания в эфир”. Древнее слово оказалось живучим.

Ньютон безоговорочно принял понятие эфира, считая идею воздействия одного тела на другое на расстоянии в вакууме абсурдной.

Какова бы ни была его природа, эфир, по убеждению ученых, наполнял собой все пространство, пронизывал все вещество, проникая между всеми атомами.

Свойства света и в самом деле были таковы, что их нельзя было объяснить, не прибегая к среде, способной передавать волновое излучение на миллионы километров, не ослабляя его энергию. Но существует ли эта среда на самом деле? А если существует, то покоится ли он неподвижно или находится в непрерывном движении?

Английский математик и физик Стокс утверждал, что Земля, вращаясь вокруг оси и вокруг Солнца, увлекает за собой эфир.

Французский ученый Френель полагал его неподвижным и многие поддерживали такие представления, потому что такой эфир представлял собой идеальную систему отсчета. Относительно его можно было регистрировать абсолютное движение, не зависящее от положения наблюдателя. Абсолютна ли скорость света? Одинакова ли она для любого наблюдателя, независима или, напротив, зависима от движения источника света?

Это были вопросы, на которые ответ дала специальная теория относительности; это была проблема космического масштаба, из которой вытекали выводы исключительной важности.

Опыт Майкельсона: полупрозрачное зеркало сначала расщепляло луч на два взаимно перпендикулярных, которые, в свою очередь, отразившись от расположенных на равных расстояниях зеркал, соединялись вновь. Опыт показал, что “эфирный ветер” не оказывает никакого влияния на свет. Майкельсон пришел к выводу, что гипотеза неподвижного эфира ошибочна. Напрашивался вывод, что эфир, если он существует, не неподвижен относительно Земли.

Эрнст Мах тотчас же потребовал отказаться от идеи эфира. Зато лорд Кельвин продолжал по прежнему верить в эфир. Кельвин и Рэлей обратились к Майкельсону с предложением проверить влияние движения среды на скорость света. Результат был опубликован в 1887 году. Джон Бернал назвал его “величайшим из всех отрицательных результатов в истории науки”.

Хотя опыт, как говорится, поставил крест на неподвижном эфире, все же оставалась возможность, что “Земля увлекает за собой эфир, придавая ему почти ту же скорость, с какой движется сама”.

Через десять лет Майкельсон экспериментально проверил и эту гипотезу. Результат снова был отрицательным. Но чтобы окончательно похоронить эфир, нужна была теория относительности Эйнштейна. Пока же эксперимент Майкельсона-Морли завел физику в тупик.

В период 1893-1895 годов два крупнейших теоретика независимо друг от друга попытались спасти эфир.

Профессор дублинского Тринити колледжа Джордж Фитцджеральд дал блестящее и ошеломляющее объяснение отрицательному результату опыта Майкельсона-Морли. Он предположил, что размеры тел меняются с увеличением скорости их движения, сжимаются в направлении движения. Многим эта теория показалась плодом больного воображения.

Немногие, но очень серьезные физики-теоретики заинтересовались идеей сокращения. Лоренц увидел в ней подтверждение существования эфира. Он построил стройную математическую теорию, из которой, однако, вытекало, что одного сокращения для описания движущихся тел явно недостаточно. Приходилось вводить еще и особое время, зависящее от скорости. Это было уж совсем непостижимо. Этот вывод самому автору казался хитрой уловкой: он не собирался посягать на ньютоновское “абсолютное время”.

Гипотеза Фитцджеральда-Лоренца была, вне всякого сомнения, исключительно смелой. Она блестяще разрешала все противоречия, связанные с опытом Майкельсона-Морли. Но она целиком вытекала из законов классической физики. Она произвела переворот в умах, вызвала бурю в ученом мире, но не смогла взорвать ньютоновской классики.

Лоренц пришел к релятивизму от традиционных основ, которые стали для него барьером. Это был философский барьер, который великий ученый так и не смог преодолеть. Впоследствии он говорил: ”Сегодня, излагая электромагнитную теорию, я утверждаю, что движущийся по криволинейной орбите электрон излучает энергию, а завтра я в той же аудитории говорю, что электрон, вращаясь вокруг ядра, не теряет энергии. Где же истина, если о ней можно делать взаимно исключающие друг друга утверждения? Способны ли мы вообще узнать истину и имеет ли смысл заниматься наукой?”

Противоречия казались ему неразрешимыми. Он глубоко переживал это. Последние годы его были отравлены скепсисом и отчаянием. В беседе с А.Ф.Иоффе он как-то сказал: ”Я потерял уверенность, что моя научная работа вела к объективной истине, и я не знаю, зачем жил; жалею только, что не умер пять лет назад, когда мне еще все представлялось ясным”.

А ураган неясности нарастал. Томсон обнаружил электрон и доказал электрическую природу вещества. Кюри открыли радий, который продемонстрировал необычные свойства. Физики обнаружили, что испускаемые им электроны движутся со скоростью, достигающей многих тысяч километров в секунду. Еще совсем недавно это казалось невероятным. Немецкий физик Кауфман экспериментально доказал, что масса такого быстрого электрона меняется со скоростью. Чем быстрее двигался электрон, тем больше была его масса. Масса перестала быть постоянной величиной.

В опытах физиков рвался мир, созданный Ньютоном. Окончательно разрушил и в то же время спас этот мир Эйнштейн.