8.Активные формы кислорода и их значение ж/д растений. Антиоксидантная система.
Молекулярный кислород не токсичен для клеток, однако опасность представляют продукты его неполного окисления: перекисные соединения, супероксидные радикалы, синглетный кислород и др. Эти соединения получили название активные формы кислорода. Появление АФК вызвано тем, что молекулярный кислород может перехватывать электроны у некоторых переносчиков цепи электронного транспорта. АФК: перекись водорода, в свою очередь, восстанавливается и дает гидроксил-радикал. Реакционная способность последнего чрезвычайно высока, поэтому гидроксил-радикал способен окислить практически любое вещество клетки. АФК вызывают образование органических гидропероксидов ДНК, белков, липидов. Этот процесс называют перекисным окислением. Гидропероксиды в ходе метаболизма способны превращаться в различные окисленные соединения — спирты, альдегиды и др. АФК образуются в различных частях клетки. У растений эти процессы происходят в хлоропластах. В ФС I появление супероксидного радикала связано с ферредоксином, а в ФС II — с фотолизом воды. Образование АФК в клетке происходит постоянно и является обычным метаболическим процессом. АФК принимают участие в защитных реакциях, например, при действии патогенов, а также служат вторичными посредниками в передаче сигналов. Однако при неблагоприятных воздействиях (засуха, затопление, повышенная температура, тяжелые металлы, механические повреждения, гербициды и др.) происходит чрезмерное накопление АФК, что может приводить к серьезным функциональным нарушениям, поскольку повреждаются различные компоненты клеток. АФК могут вызывать повреждение фотосинтетического аппарата хлоропластов (фотоингибирование). АФК вызывают модификацию нуклеотидов и нуклеиновых кислот. Ингибируется деление клетки. Особенно АФК влияют на электронтранспортную цепь хлоропластов и митохондрий. Защита клетки обеспечивается благодаря работе антиоксидантной системы (АОС), которая может осуществляться энзиматическим и неэнзиматическим путем. Основным способом защиты от АФК является их инактивация. Это достигается работой специальных ферментов: супероксиддисмутазы, каталазы и пероксидазы. Супероксиддисмутаза(СОД) присутствует во всех аэробных организмах и служит для эффективного удаления супероксидных радикалов. Каталаза расщепляет перекись водорода с образованием воды и молекулярного кислорода, а пероксидазы восстанавливают перекись до воды специальными субстратами, например, глютатионом. Глютатион-зависимые ферменты работают во всех частях клетки, включая ядро, митохондрии и эндоплазматическую сеть. Важность работы каротиноидов по обезвреживанию АФК доказывается опытами с мутантами. Мутанты микрооганизмов, лишенные каротиноидов, оказываются нежизнеспособными и погибают на свету в результате фотоокисления. Другим механизмом защиты от АФК является уменьшение внутриклеточной концентрации молекулярного кислорода, а соответственно и АФК в клетке. Кроме того, в ответ на накопление АФК могут открываться поры на внутренней мембране митохондрий, что, по-видимому, связано с утечкой протонов. В результате стимулируется дыхание и «утилизируется» 02. При избыточном накоплении АФК клеткой и невозможности избавится от них, клетки уничтожаются апоптозом.Показано, что введение в ткани СОД подавляет образование избыточных АФК и снижает гибель клеток под действием патогенов. Трансгенные растения с повышенной активностью СОД оказывались более устойчивыми в ряду стресс-факторов, в том числе водному дефициту.
- 1.Значения дыхания в жизни растений.
- 2. Развитие представлений о природе механизмов и путях окислительно-восстановительных превращений в клетке. Теория дыхания паладина. Перекисная теория окисления Баха.
- 3. Пути окисления органических веществ в клетке.
- 5. Механизм активации дыхательных субстратов, пути их включения в процессы биологического окисления. Взаимосвязь превращения углеводов, белков и жиров.
- 6.Ферментативные системы дыхания. Участие ферментов различных классов в дыхании. Альтернативность каталитического механизма биологического окисления.
- 7. Механизмы активации водорода, субстрата и молекулярного кислорода. Механизмы участия кислорода в метаболизме.
- 8.Активные формы кислорода и их значение ж/д растений. Антиоксидантная система.
- 9. Эволюция энзиматических систем, участвующих во взаимодействии клеток с кислородом.
- 10. Пути диссимиляции углеводов.
- 11. Гликолиз, суть его реакций, энергетика. Синтез сахаров при обращении гликолиза.
- 12. Цикл ди-, трикарбоновых кислот, характеристика основных стадий цикла. Конверсия жиров в углеводы.
- 13. Цикл Кребса-Корнберга (глиоксилатный цикл).
- 14. Пентозофосфатный путь окисления глюкозы и его роль в метаболизме клетки.
- 15. Митохондрии. Их структура и функции. Особенность растительных митохондрий – присутствие маликэнзима.
- 17. Окислительное фосфорилирование в этц, энергетическая эффективность. Субстратное окислительное фосфорилирование. Сопряжённость электронного транспорта с синтезом атф.
- 19.Дыхание в фотосинтезирующей клетке. Дыхание целого растения. Зависимость дыхания от биологических особенностей растения .
- 20.Влияние на дыхание внешних факторов. Количественные показатели газообмена.
- 21.Потери на дыхании при хранении урожая. Аноксия и адаптация к ней дыхательной системы.