11.7.3. Первые секунды Вселенной
Ранняя Вселенная представляла собой гигантскую лабораторию природы, в которой энергия, высвободившаяся в результате Большого взрыва, пробудила физические процессы, не воспроизводимые в земных условиях.
Следующий этап рождения Вселенной связан с так называемой эрой Великого объединения: возраст Вселенной всего лишь 10-34 с, а температура около 1027 К. В этот момент Космос был заполнен «супом» из странных, неведомых нам частиц, в том числе чрезвычайно массивных. Важнейшими составляющими экзотического «супа» были, вероятно, сверхмассивные частицы — переносчики взаимодействия в теориях Великого объединения, так называемые Х- и У-частицы (см. 10.3.5). Именно эти частицы привели к асимметрии в соотношении вещества и антивещества.
Как показал А.Д. Сахаров (1967), при падении Т < 1027 К Х- и У- бозоны уже не могут эффективно рождаться, задерживается и процесс аннигиляции; начинает преобладать процесс распада. Но распад частиц и античастиц идет по-разному (с нарушением барионного числа). В результате появляется небольшой избыток частиц над античастицами. По оценкам, эта асимметрия характеризуется отношением (109+ 1): 109, т.е. на каждый миллиард античастиц рождается миллиард плюс одна частица. Несмотря на малость этого эффекта, он играет решающую роль. По мере остывания Вселенной антивещество аннигилировало с веществом и при этом почти все вещество исчезало. «Почти», но не все, поскольку имелся избыток вещества над антивеществом в одну частицу на миллиард. Именно этот мизерный остаток и послужил материалом, из которого построена вся Вселенная, включая человека. Если бы этого остатка не было, то мир был бы практически «пустым», т.е. заполнен только полем, но не веществом. Можно сказать, что вещество возникло благодаря оплошности природы. Именно в эти самые ранние моменты развития Вселенной сложилась ее современная структура.
Таким образом, подавляющая часть вещества, возникшего в процессе Большого Взрыва, аннигилировала в первые секунды Вселенной, а вместе с ним исчезло и все космическое антивещество. (Теперь понятно, почему во Вселенной так мало антивещества.) Исчезнув, оно превратилось в энергию: в процессе аннигиляции на каждый уцелевший электрон (или протон) возникало около миллиарда гамма-квантов. В результате расширения Вселенной это гамма-излучение «остыло», образовав к настоящему времени так называемое фоновое тепловое излучение, которое составляет значительную часть энергии Вселенной.
Спустя 10 -12 с после Большого Взрыва температура была столь высока (Т > 1015 К), что тепловой энергии оказалось достаточно для рождения всех известных частиц и античастиц, причем такой плотности, что установилось равновесие, при котором энергия равномерно распределялась между всеми видами частиц. На этой стадии характер вещества во Вселенной резко отличался от всего, что мы можем непосредственно наблюдать: вещество представляло собой «кварковую жидкость»; адроны не имели индивидуальных свойств; протоны и нейтроны не существовали как различные объекты; не различались слабое и электромагнитное взаимодействия; такие частицы, как электроны, мюоны и нейтрино, не существовали в обычном виде; кварки, лептоны, бозоны не обладают массой покоя, как и фотон; свойства фотонов перемешаны со свойствами W- и Z-частиц.
Однако вещество не могло продолжительно существовать в столь нестабильной фазе. Падение температуры ниже 1015 К вызывает внезапный фазовый переход, напоминающий замерзание воды и образование льда. В этот момент нарушается калибровочная симметрия, а электромагнитное взаимодействие отделяется от слабого. W и Z-бозоны, кварки и лептоны приобретают массу, а фотон остался безмассовым. Результатом этого перехода явилось возникновение известных нам частиц — электронов, нейтрино, фотонов и кварков, которые теперь вполне различимы.
Следующий фазовый переход происходит через одну миллисекунду после Большого Взрыва при Т = 1013 К и приводит к конденсации кварков. Кварки объединяются в группы (попарно или по три) и образуются адроны (протоны, нейтроны, мезоны и другие сильно взаимодействующие частицы). С этого момента открылся прямой путь для синтеза гелия, который и начинается через несколько минут после Большого Взрыва.
При Т ≈ 2 • 1010 К и t ≈ 0,2 с электронные нейтрино перестают взаимодействовать с частицами. Поскольку нейтрино стабильны и очень слабо взаимодействуют с веществом, мир для них оказывается практически прозрачным; они легко перемещаются во Вселенной, сохранившись до наших дней, только их энергия уменьшается из-за ее расширения. К нашей эпохе температура этих реликтовых нейтрино должна оказаться около 2 К. Обнаружение этого излучения будет великим достижением астрономии. Но пока, к сожалению, методы обнаружения таких реликтовых нейтрино не разработаны.
- В.М.Найдыш Концепции современного естествознания
- Предисловие
- Введение Естествознание как отрасль научного познания
- B.I. Понятие культуры
- В.2. Материальная и духовная культура
- В.З. Наука как компонент духовной культуры
- В.4. Проблема культур в науке: от конфронтации к сотрудничеству
- В.5. Структура естественно-научного познания
- Часть первая Основные исторические периоды развития естествознания
- 1. Накопление рациональных знаний в системе первобытного сознания
- 1.1. Повседневное, стихийно-эмпирическое знание
- 1.2. Зарождение счета
- 1.3. Мифология
- 2. Наука в цивилизациях древности
- 2.1. Становление цивилизации
- 2.1.1. Неолитическая революция
- 2.1.2. Рационализация форм деятельности и общения
- 2.1.3. Разделение труда и развитие духовной культуры
- 2.1.4. Возникновение письменности
- 2.1.5. «Культурное пространство» древневосточных цивилизаций
- 2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока
- 2.2.1. От Мифа к Логосу (Науке)
- 2.2.2. Географические знания.
- 2.2.3. Биологические, медицинские и химические знания
- 2.2.4. Астрономические знания
- 2.2.5. Математические знания
- 3. Создание первой естественно-научной картины мира в древнегреческой культуре
- 3.1. Культурно-исторические особенности древнегреческой цивилизации
- 3.2. От Хаоса к Космосу
- 3.3. Категория субстанции
- 3.4. Мир как число
- 3.4.1. Пифагорейский союз
- 3.4.2. Математические и естественно-научные достижения пифагореизма
- 3.5. Формирование первых естественно-научных программ
- 3.5.1. Великое открытие элеатов
- 3.5.2. Атомистическая программа
- 3.5.3. Математическая программа
- 3.6. Физика и космология Аристотеля
- 3.6.1. Учение Аристотеля о материи и форме
- 3.6.2. Космология Аристотеля
- 3.6.3. Основные представления аристотелевской механики
- 3.7. Естествознание эллинистически-римского периода
- 3.7.1. Культура эллинизма
- 3.7.2. Александрийская математическая школа
- 3.7.3. Развитие теоретической и прикладной механики
- 3.8. Развитие древнегреческой астрономии
- 3. 8.1. Становление математической астрономии
- 3.8.2. Геоцентрическая система Птолемея
- 3.9. Античные воззрения на органический мир
- 3. 9.1. Античные толкования проблемы происхождения и развития живого
- 3.9. 2. Биологические воззрения Аристотеля
- 3. 9.3. Накопление рациональных биологических знаний в античности
- 3.9.4. Античные представления о происхождении человека
- 3.10. Упадок античной науки
- 4. Естествознание в эпоху средневековья
- 4.1. Особенности средневековой духовной культуры
- 4.1.1. Доминирование ценностного над познавательным
- 4. 1.2. Отношение к познанию природы
- 4.1.3. Особенности познавательной деятельности
- 4.2. Естественно-научные достижения средневековой арабской культуры
- 4.2.1. Математические достижения
- 4.2.2. Физика и астрономия
- 4.3. Становление науки в средневековой Европе
- 4.4. Физические идеи средневековья
- 4.5. Алхимия как феномен средневековой культуры
- 4.6. Религиозная трактовка происхождения человека
- 4.7. Историческое значение средневекового познания
- 5. Познание природы в эпоху возрождения
- 5.1. Ренессанская мировоззренческая революция
- 5.2. Зарождение научной биологии
- 5.3. Коперниканская революция
- 5.3.1. Гелиоцентрическая система мира
- 5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма
- 6. Научная революция XVII в.: возникновение классической механики
- 6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- 6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории
- 6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»
- 6.2.2. Картезианская физика
- 6.2.3. Новые идеи в динамике Солнечной системы
- 6.3. Ньютонианская революция
- 6.3.1. Создание теории тяготения
- 6.3.2. Корпускулярная теория света
- 6.3.3. Космология Ньютона
- 6.4. Изучение магнитных и электрических явлений вXviIв.
- 7. Естествознание XVIII -первой половины XIX в.
- 7.1. Общая характеристика развития физики
- 7.1.1. Становление основных отраслей классической физики
- 7.1.2. Принцип дальнодействия
- 7.1.3. Теория теплорода
- 7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.
- 7.1.5. Физика первой половины XIX в.: общая характеристика
- 7.1.6. Волновая теория света
- 7.1.7. Проблема эфира
- 7.1.8. Возникновение полевой концепции
- 7.1.9. Закон сохранения и превращения энергии
- 7.1.10. Концепции пространства и времени
- 7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)
- 7.2. Развитие астрономической картины мира
- 7.2.1. Создание внегалактической астрономии
- 7.2.2. Формирование идеи развития природы
- 7.2.3. Идея развития в астрономии
- 7.2.4. Космогония и. Канта
- 7.2.5. Методологические установки классической астрономии
- 7.3. Возникновение и развитие научной химии
- 7.3.1. От алхимии к научной химии
- 7. 3.2. Лавуазье: революция в химии
- 7.3.3. Победа атомно-молекулярного учения
- 7.4. Биология
- 7.4.1. Образы, идеи, принципы и понятия биологии XVIII в.
- 7.4.2. От концепций трансформации видов к идее эволюции
- 7.4.3. Ламаркизм
- 7.4.4. Катастрофизм
- 7.4.5. Униформизм. Актуалистический метод
- 7.4.6. Дарвиновская революция
- 7.4.7. Методологические установки классической биологии
- 8. Естествознание второй половины XIX в.: на пути к новой научной революции
- 8.1. Физика
- 8.1.1. Основные черты
- 8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем
- 8.1.3. Развитие представлений о пространстве и времени
- 8.1.4. Теория электромагнитного поля
- 8.1.5. Великие открытия
- 8.1.6. Кризис в физике на рубеже веков
- 8.2. Астрономия
- 8.2.1. Триумф ньютоновской астрономии и... Первая брешь в ней
- 8.2.2. Формирование астрофизики: проблема внутреннего строения звезд
- 8.3. Биология
- 8. 3.1. Утверждение теории эволюции ч. Дарвина
- 8.3.2. Становление учения о наследственности (генетики)
- Часть вторая
- 9.1.2. Создание а. Эйнштейном специальной теории относительности
- 9.2. Создание и развитие общей теории относительности
- 9.2.1. Принципы и понятия эйнштейновской теории гравитации
- 9.2.2. Экспериментальная проверка общей теории относительности
- 9.2 3. Современное состояние теории гравитациии ее роль в физике
- 9.3. Возникновение и развитие квантовой физики
- 9.3.1. Гипотеза квантов
- 9.3.2. Теория атома и. Бора. Принцип соответствия
- 9.3.3. Создание нерелятивистской квантовой механики
- 9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности
- 9.4. Методологические установки неклассической физики
- 10. Мир элементарных частиц
- 10.1. Фундаментальные физические взаимодействия
- 10.1.1. Гравитация
- 10.1.2. Электромагнетизм
- 10.1.3. Слабое взаимодействие
- 10.1.4. Сильное взаимодействие
- 10.1.5. Проблема единства физики
- 10.2. Классификация элементарных частиц
- 10.2.1. Характеристики субатомных частиц
- 10.2.2. Лептоны
- L0.2.3. Адроны
- 10.2.4. Частицы - переносчики взаимодействий
- 10.3. Теории элементарных частиц
- 10.3.1. Квантовая электродинамика
- 10.3.2. Теория кварков
- 10.3.3. Теория электрослабого взаимодействия
- 10.3.4. Квантовая хромодинамика
- 10.3.5. На пути к Великому объединению
- Современная астрономическая картина мира
- 11. Особенности астрономии XX в.
- 11.1. Изменения способа познания в астрономии хх в.
- 11.2. Новая астрономическая революция
- 11.3. Солнечная система
- 11.3.1. Планеты и их спутники
- 11.3.2. Строение планет
- 11.3.3. Происхождение планет
- 11.3.4. Химический состав вещества во Вселенной
- 11.4. Звезды
- 11.4.1. Звезда - газовый шар
- 11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»
- 11.5. Острова Вселенной: галактики
- 11.5.1. Общее представление о галактиках и их изучении
- 11.5.2. Наша Галактика - звездный дом человечества
- 11.5.3. Межзвездная среда
- 11.5.4. Понятие Метагалактики
- 11.6. Вселенная в целом
- 11.6.1. Особенности современной космологии
- 11.7. Эволюция Вселенной
- 11.7.1. Модель горячей Вселенной
- 11.7.2. Большой Взрыв: инфляционная модель
- 11.7.3. Первые секунды Вселенной
- 11.7.4. От первых минут Вселенной до образования звезд и галактик
- 11.7.5. Образование тяжелых химических элементов
- 11.7.6. Сценарии будущего Вселенной
- 11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- 11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности
- 11.8.2. Типы контактов с внеземными цивилизациями
- 11.8.3. Поиски внеземных цивилизаций
- 11.9. Методологические остановки «неклассической» астрономии XX в.
- Современная биологическая картина мира
- 12. Особенности биологии XX в.
- 12.1. Век генетики
- 12.1.1. Хромосомная теория наследственности
- 12.1.2. Создание синтетической теории эволюции
- 12.1.3. Революция в молекулярной, биологии
- 12.1.4. Методологические установки современной биологии
- 13. Мир живого
- 13.1. Особенности живых систем
- 13.1.1. Существенные черты живых систем
- 13.1.2. Основные уровни организации живого
- 13.2. Возникновение жизни на Земле
- 13.2.1. Развитие представлений о происхождении жизни
- 13.2.2. Возникновение жизни
- 13.3. Развитие органического мира
- 13.3.1. Основные этапы геологической истории Земли
- Геологические эры Земли:
- 13.3.2. Начальные этапы эволюции жизни
- 13.3.3. Образование царства растений и царства животных
- 13.3.4. Завоевание суши
- 13.3.5. Основные пути эволюции наземных растений
- 13.3.6. Пути эволюции животных
- 14. Возникновение человека и общества (антропосоциогенез)
- 14.1. Естествознание XVII— первой половины xiXв. О происхождении человека
- 14.2. Предпосылки антропосоциогенеза
- 14.2.1. Абиотические предпосылки
- 14.2.2. Биологические предпосылки
- 14.3. Возникновение труда
- 14.3.1. «Человек умелый»
- 14.3.2. Развитие древнейшей техники человека
- 14.4. Становление социальных отношений
- 14.4.1. Биологические предпосылки социальных отношений
- 14.4.2. Возникновение разделения труда
- 14.5. Генезис сознания и языка.
- 14.5.1. Раскрытие тайны происхождения сознания
- 14.5.2. Генезис языка
- Часть третья естествознание на порогеXxIв.
- 15. Теория самоорганизации (синергетика)
- 15.1. От моделирования простых систем к моделированию сложных
- 15.2. Характеристики самоорганизующихся систем
- 15.2.1. Открытость
- 15.2.2. Нелинейность
- 15.2.3. Диссипативность
- 15.3. Закономерности самоорганизации
- 16. Глобальный эволюционизм
- 17. На пути к постнеклассической науке XXI в.
- Заключение Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- Наука и квазинаучные формы духовной культуры
- Контрольные вопросы
- Литература
- Терминологический словарь
- Именной указатель
- Основные сокращения и обозначения
- Соотношения между некоторыми физическими величинами
- Содержание
- 1. Накопление рациональных знаний в системе первобытного сознания 12
- 2. Наука в цивилизациях древности 20
- 3. Создание первой естественно-научной картины мира в древнегреческой культуре 39
- 4. Естествознание в эпоху средневековья 64
- 5. Познание природы в эпоху возрождения 75
- 6. Научная революция XVII в.: возникновение классической механики 83
- 7. Естествознание XVIII -первой половины XIX в. 93
- 8. Естествознание второй половины XIX в.: на пути к новой научной революции 122
- 9. Научная революция в физике начала XX в.: возникновение релятивистской и квантовой физики 135
- 10. Мир элементарных частиц 149
- 11. Особенности астрономии XX в. 163
- 12. Особенности биологии XX в. 191
- 13. Мир живого 194
- 14. Возникновение человека и общества (антропосоциогенез) 210
- 15. Теория самоорганизации (синергетика) 224
- 16. Глобальный эволюционизм 228
- 17. На пути к постнеклассической науке XXI в. 229