Мир реальных макрообъектов - статистическая физика
Выход книги Дарвина “Происхождение видов” (1859) совпал с открытием Дж. Максвеллом статистического закона о распределении молекул по скоростям, который допускает случайные события. С теорией естественного отбора Дарвина и законом Максвелла в науку вошло представление о динамических и статистических закономерностях. Первые точно определяют поведение отдельных тел, вторые - вероятность поведения тел, входящих в большие ансамбли.
В физике, химии и биологии встречаются статистические закономерности, отличие которых от законов механики состоит в том, что статистические закономерности управляют системами, состоящими из огромного числа объектов, подверженных случайным событиям. Случайными называют события, которые зависят от множества причин, связи между которыми не представляется возможным установить. Но при многократном повторении случайных событий проявляются определенные закономерности.
Открытие законов механики послужило основой для формирования механистической картины мира, согласно которой миром правят строгие однозначные законы, не допускающие никаких случайностей. Течение всех процессов определялось начальными условиями, мир представлялся состоящим из вечных, неделимых частиц, движение которых всегда можно описать с помощью законов механики.
Согласно представлениям того времени чья-то смерть или рождение, хорошая погода сегодня или война в будущем были предопределены существовавшим до этого расположением и скоростью частиц, составляющих Вселенную. “Природа проста и не роскошествует излишними причинами”, - утверждал один из создателей механистической картины мира - Исаак Ньютон. С открытием статистических закономерностей, которые вошли в науку с работами Дарвина, Максвелла, Больцмана, начали формироваться новые представления о мире, которые более адекватно отражали существующие в нем взаимосвязи.
Статистическая физика приняла завершенный вид после работ американского физика Дж.У.Гиббса, который дал общий метод вычисления усредненных макроскопических величин для произвольной системы.
Для описания движения планет, космического корабля, работы простых механизмов используют уравнения механики, которые позволяют определить положения и скорости всех частей системы. Но уравнения механики становятся бессильными, когда число частиц в системе очень велико, например, когда надо описать поведение газа или электрического тока.
Статистическая физика изучает свойства сложных систем - газов, жидкостей, твердых тел и их связь со свойствами отдельных частиц - атомов и молекул, из которых эти системы состоят. Для таких систем не нужно слишком детального описания. Нельзя измерить энергию и импульс всех молекул газа. В газе мы измеряем давление, которое есть результат ударов большого числа молекул; сопротивление кристалла есть следствие большого числа столкновений электронов с атомами. Во всех физических системах, состоящих из большого числа частиц, изучаются величины, усредненные по многим частицам.
Ансамбль (статистический) - совокупность одинаковых физических систем многих частиц, находящихся в одинаковых макроскопических состояниях, в то время как микросостояния могут быть различными.
- Смоленский институт бизнеса и предпринимательства
- Тема 1.3. Физика как целое
- Тема 2.4. Основные концепции и перспективы биологии
- ... Различие между гуманитарными и естественными науками, столь резкое в средние века, ныне не принципиально, а, скоре, стадиально
- Этапы развития естественно-научного мышления. История естествознания
- Развитие физико-химической биологии
- Панорама современного естествознания и его незавершенность.
- Литература
- Раздел 1. Физика глазами гуманитария: образы физики Пространство, время и материя в контексте культуры
- Литература
- Тема 1.1. Физика необходимого Мир дискретных объектов - физика частиц
- Состояние физической системы и его изменение со временем
- Импульс, энергия и момент системы как меры движения
- Мир непрерывных объектов - физика полей (континуум)
- Сплошная среда и упругие волны
- Взаимодействие: концепции близкодействия и дальнодействия
- Электромагнитное поле и электромагнитные волны
- Интерференция, дифракция и поляризация света
- Литература
- Тема 1.2. Физика возможного Мир микрообъектов - квантовая физика
- Атомы, молекулы, кристаллы
- Периодический закон Менделеева
- Квантовые переходы и излучение
- Атомы и молекулы
- Мир реальных макрообъектов - статистическая физика
- Тепловое равновесие и флуктуации. Неравновесные состояния и релаксация
- Тепловая физика: от Карно к Гиббсу
- Энергия, температура, энтропия
- Ближний и дальний порядки в природе
- Микропорядок и макропорядок. Ближний и дальний порядок
- Фазовые переходы и симметрия
- Необратимость - неустранимое свойство реальности. Стрела времени
- Литература
- Тема 1.3. Физика как целое Иерархия структур природы
- Микромир
- Физический вакуум как реальность
- Макромир
- Мегамир Звезды. Галактики. Вселенная
- Вариационные принципы
- Принцип дополнительности
- Принципы симметрии и законы сохранения
- Литература
- Тема 1.4. От физики существующего к физике возникающего Современная физическая картина мира
- Креативная роль физического вакуума
- Этапы эволюции горячей Вселенной, неоднозначность сценария и антропный принцип
- Происхождение галактик и Солнечной системы
- Земля: происхождение и динамика геосфер
- Роль живых организмов в эволюции Земли
- Литература
- Раздел 2. Жизнь От атомов к протожизни. Неорганические и органические соединения и их многообразие
- Кислоты, основания, соли
- Химия жизни
- Особенности биологической формы организации материи. Молекулы живых систем
- Матричный синтез. Информационные макромолекулы
- Тема 2.1. Живые системы
- Принципы взаимодействия организма и среды обитания
- Принципы воспроизводства и развития живых систем
- Клеточное строение организмов. Принципы структурной организации и регуляции метаболизма
- Жизненный цикл клетки
- Единство и многообразие клеточных типов
- Дифференциация и интеграция функций в организме
- Размножение и развитие организмов
- Смерть и ее биологический смысл
- Многообразие биологических видов — основа организации и устойчивости биосферы
- Принципы систематики и таксономии
- Планы строения и принципы функционирования представителей основных таксонов
- Эволюционное и индивидуальное развитие. Онтогенез и филогенез
- Генетика и эволюция
- Литература
- Тема 2.2. Человек: организм и личность
- Положение человека в царстве животных
- Отличительные особенности человека
- Мозг и высшая нервная деятельность
- Природа агрессии
- Природа наслаждений
- Биосоциальные основы поведения
- Половое поведение человека
- Происхождение человека
- Этапы антропогенеза
- Биологические предпосылки и факторы антропогенеза
- Проблемы цефализации
- Биосоциальная природа человека
- Экология и здоровье. Биополитика
- Литература
- Тема 2.3. Биосфера и цивилизация
- Круговороты вещества и энергии
- Биосфера
- Эволюция биосферы
- Ресурсы биосферы
- Пределы устойчивости биосферы
- Биопродуктивность биосферы
- Ресурсы биосферы и демографические проблемы
- Антропогенные воздействия на биосферу
- Экологический кризис и пути его преодоления
- Принципы рационального природопользования
- Охрана природы
- Экология человека
- Социальная экология
- Антропоцентризм, биоцентризм и решение социальных проблем
- Пути развития экономики, не разрушающей природу
- Экологическое право
- Что мы можем сделать для сохранения жизни на Земле
- Человек, биосфера и космические циклы
- Литература
- Тема 2.4. Основные концепции и перспективы биологии
- Тема 3.2. Принципы синергетики, эволюционная триада и системный подход
- О направлении самопроизвольных процессов
- Критерий устойчивости систем, далеких от равновесия
- Порядок и энтропия
- Механизмы эволюции
- Литература
- Тема 3.3. Качественные методы в эволюционных задачах Начала нелинейного мышления. Пространства состояний системы и динамическая модель
- Диссипативные системы вдали от равновесия
- Литература
- Тема 3.4. Динамический хаос - фундаментальное свойство реальности
- Литература
- Тема 3.5. Самоорганизация в живой и неживой природе
- Информационные аспекты синергетики
- Литература
- Заключение
- Литература