Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей. Типы и устройство кардиостимуляторов.
Медицинские аппараты - генераторы непрерывных и импульсных низкочастотных электромагнитных колебаний - объединяют две большие группы устройств, которые трудно четко различить, - стимуляторы и аппараты физиотерапии.
Электростимуляция - побуждение деятельности органа или ткани с помощью электрических импульсов.
Достоинства электростимуляции:
1) отсутствие побочных воздействий,
2) хорошая переносимость воздействия,
3) минимальное количество противопоказаний (поздние сроки беременности, онкологические больные),
4) локальность воздействия,
5) легкость дозировки воздействия,
6) повышение технического уровня врачей (кругозор),
7) развитие техники.
Классификация электростимуляторов (по объекту воздействия):
1. Стимуляция ЦНС.
2. Стимуляция нервно-мышечной системы и опорно-двигательного аппарата.
3. Стимуляция сердечно-сосудистой системы.
4. Стимуляция дыхания.
5. Стимуляция органов моче-половой системы.
6. Стимуляция желудочно-кишечного тракта.
Назначение:
а) для восстановления временно утраченной функции,
б) усиление какой-либо функции, если она ослаблена,
в) замена функции.
Примером стимулятора широкого назначения является универсалный электростимулятор УЭИ-1. Он представляет собой генератор импульсного тока прямоугольной и экспоненциальной формы. Параметры импульсов и их частота могут регулироваться в широких пределах, длительность прямоугольных импульсов способна изменяться дискретно от 0,01 до 300 мс.
Аппарат позволяет измерять амплитуду импульса тока в цепи пациента. На экране электронно-лучевой трубки можно наблюдать форму импульсов на выходе аппарата.
Другим прибором для электролечения является аппарат СНИМ-1, частота импульсов около 100 Гц, форма тока показана на рис.
Электротерапия синусоидальными модулированными токами осуществляется аппаратом “Амплипульс - 3”. В этом аппарате частота несущих синусоидальных колебаний равна 5 кГц, частота модулирующих синусоидальных колебаний может плавно регулироваться в пределах 10-150 Гц. Некоторые возможные формы токов, созданные этим генератором, показаны на рис.
Блокинг-генератор и мультитвибратор применяются в качестве генераторов импульсов в кардиостимуляторах. Кардиостимулятором называют прибор, позволяющий генерировать искуственные стимулирующие импульсы и подавать их на сердце. Он состоит из импульсного генератора и соответствующих электродов. Существуют имплантируемые и внешние кардиостимуляторы. Имплантируемым кардиостимулятором называют такое устройство, все системы которого находятся внутри тела пациента. В противоположность ему, внешнийкардистимулятор обычно состоит из внешнего генератора импульсов, носимого пациентом и подключенного к электродам, расположенным внутри миокарда или на нем.
Существуют электростимуляторы, импульсы которых подаются на орган независимо от естественной электрической активности, другие же синхронизируют импульсы с биопотенциалами биологической системы (биоэлектрическая стимуляция).
Примером последнего может служить генератор электростимуля-ционных импульсов в синхрониированном с “Р” волной электро-кардиостимуляторе. На выходе такого генератора ститмуляционный импульс появляется только в том случае, если со специальной схемы усиления на вход генератора поступает импульс, соответствующий волне электрокардиограммы.
Для генераторов импульсов в кардиостимуляторах требуются источники питания. В настоящее время большинство внешних генераторов получает питание от батарей. Сейчас разработаны генераторы с перезаряжаемыми батареями, срок службы которых 10 лет.
Для имплантируемых источников питания созданы генераторы с атомным источником питания. В этих устройствах тепло, выделяемые при распаде радиоактивного плутония, преобразуется в постоянный ток, который используется для питания кардиостимулятора. Это устройство имеют срок службы около 10 лет; при этом радиационная опасность для пациента пренебрежимо мала.
- Взаимодействие ионизирующего излучения с веществом
- Величина лпэ в кэВ/мкм зависит от плотности вещества.
- Относительная биологическая эффективность различных видов излучений
- Физико-химические основы биологического действия ионизирующего излучения. Защита от ионизирующих излучений
- Ионизационные потери
- Тормозное и черенковское излучения
- Прямое и косвенное действие излучений на мишени в клетках
- Первичные продукты радиолиза воды и их взаимодействие с биомолекулами
- Дифференциальное уравнение гармонического колебания.
- Уравнение для смещения, скорости и ускорения колеблющейся точки.
- Энергия при гармоническом колебании.
- Таким образом, полная энергия гармонического колебания оказывается постоянной в отсутствие сил трения. Сложение гармонических колебаний, направленных по одной прямой.
- Сложное колебание и его гармонический спектр.
- Сложение взаимно-перпендикулярных колебаний.
- Затухающие колебания.
- Уравнение волны.
- Эффект доплера.
- Акустика.
- Природа звука.
- Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- Физические основы звуковых методов исследования в клинике.
- Голография
- Дифракция света. Дифракция на щели в параллельных лучах.
- Дифракция решётки. Дифракционный спектр.
- Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы. Связь мощности дозы и активности. Дозиметрические приборы.
- Внесистемная – рад
- Детекторы ионизирующего излучения. Ионизационные камеры.
- Газоразрядные счетчики. Фотографические сцинтилляционные,
- Полупроводниковые и черенковские детекторы.
- Авторадиография.
- Импульсный сигнал и его параметры.
- Генераторы импульсных (релаксационных) электрических колебаний. Мультивибратор. Блокинг-генератор.
- Дифференцирующая и интегрирующая цепи: принципиальная схема, зависимость формы выходного импульса от длительности входного и постоянной времени цепи.
- Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей. Типы и устройство кардиостимуляторов.
- Дефибрилляторы.
- Магнитные моменты электрона, атома и молекулы.
- Магнитные свойства вещества.
- Аппарат терапии переменным магнитным полем.
- Физические основы магнитокардиографии.
- Мембранные потенциалы и их ионная природа.
- Диффузия. Пассивный перенос неэлектолитов через биомембраны, уравнение Рика. Транспорт неэлектролитов через мембраны путем простой и облегченной (в комплексе с переносчиком) диффузии.
- Механические свойства биологических тканей.
- Вязкоупругие, упруговязкие и вязкопластичные
- Системы. Механические свойства мышц, костей,
- Кровеносных сосудов, лёгких
- Задачи, объекты и методы биомеханики.
- Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.
- Эргометрия. Механические свойства тканей организма.
- Микроскоп. Формула для увеличения.
- Разрешающая способность. Значение апертурного угла. Формула для предела разрешения.
- Ультрафиолетовый микроскоп.
- Иммерсионные системы.
- Полезное увеличение.
- Специальные приемы микроскопии:
- Основные характеристики ядер атомов.
- Радиоактивность. Основной закон радиоактивного распада. Активность.
- Ядерные реакции. Методы получения радионуклидов.
- Пассивный и активный транспорт веществ
- Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.). Второй этап работы фермента - гидролиз атф. При этом происходит образование энзим - фосфатного комплекса (е-р).
- Перенос кальция из области меньшей (1-4 х 10-3 м) в область больших концентраций (1-10 х 10-3 м) - это и есть та работа, которую совершает Са - транспортная атФаза в мышечных клетках.
- Проницаемость.
- Поляризация света.
- Поляризация при двойном лучепреломлении. Поляризационные устройства.
- Вращение плоскости поляризации (оптическая активность).
- Дисперсия оптической активности. Использование поляризованного
- Света в медико-биологических исследованиях: поляриметрия
- (Сахариметрия), спектрополяриметрия, поляризационный микроскоп.
- Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- Первичное действие постоянного тока на ткани организма.
- Гальванизация.
- Лечебный электрофорез.
- Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- Первичное действие постоянного тока на ткани организма.
- Гальванизация.
- Лечебный электрофорез.
- 1. Механические волны, их виды и скорость распространения.
- Уравнение волны.
- Акустика. Природа звука. Физические характеристики звука. Тоны и шумы.
- Физические характеристики звука. Тоны и шумы.
- Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха.
- Поглощение и отражение звуковых волн. Реверберация.
- Физические основы звуковых методов исследования в клинике.
- 2. Механические колебания: гармонические, затухающие и вынужденные колебания.
- Дифференциальное уравнение гармонического колебания.
- Энергия при гармоническом колебании.
- Затухающие колебания.
- Вынужденные колебания. Резонанс.
- Автоколебания.
- Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных. Сложение гармонических колебаний, направленных по одной прямой.
- Сложное колебание и его гармонический спектр.
- Сложение взаимно-перпендикулярных колебаний.
- Ультразвук. Методы получения и регистрации.
- Источники и приемники акустических колебаний и ультразвука.
- Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.
- Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.
- Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
- Вибрации, их физические характеристики
- Ударные волны.
- Модель Вольтера
- Модель, представляющая сердечно-сосудистую систему как электрическую цепь. Чисто резистивная модель
- 1.1.2.5. Модели электрической активности сердца
- 1. Основные понятия гидродинамики. Условие неразрывности струи
- Уравнение Бернулли.
- Внутреннее трение (вязкость) жидкости. Формула Ньютона.
- Ньютоновские и неньютоновские жидкости.
- Методы определения вязкости жидкости.
- Реологические свойства крови, плазмы и сыворотки. Факторы, влияющие на вязкость крови в организме.
- Фотоэффект.