logo search
Шпора

Ньютоновские и неньютоновские жидкости.

У большинства жидкостей (вода, низкомолекулярные органические соединения, истинные растворы, расплавленные металлы и их соли) коэффициент вязкости зависит только от природы жидкости и температуры. Такие жидкости называются ньютоновскими и силы внутреннего трения, возникающие в них, подчиняются закону Ньютона.

У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсионные системы (суспензии и эмульсии), зависит также от режима течения - давления и градиента скорости. При их увеличении вязкость жидкости уменьшается вследствие нарушения внутренней структуры потока жидкости. Их вязкость характеризуют так называемым условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (давление, скорость). Такие жидкости называются структурно вязкими или неньютоновскими.

Течение вязкой жидкости. Формула Пуазейля.

Занимаясь исследованием кровообращения, французский врач и физик Пуазейль к необходимости количественного описания процессов течения вязкой жидкости вообще. Установленные им для этого случая закономерности имеют важное значение для понимания сущности гемодинамических явлений и их количественного описания.

Пуазейль установил, что вязкость жидкости может быть определена по объему жидкости, протекающей через капиллярную трубку. Этот метод применим только к случаю ламинарного течения жидкости.

Пусть на концах вертикальной капиллярной трубки длиной l и радиусом R создана постоянная разность давлений р. Выделим внутри капилляра столбик жидкости радиусом r и высотой h. На боковую поверхность этого столбика действует сила внутреннего трения:

Если р1 и р2 – давления на верхнее и нижнее сечения соответственно, то силы давления на эти сечения будут равны:

F1=p1r2 и F2=p2r2.

Сила тяжести равна Fтяж=mgh=r2gl.

При установившемся движении жидкости, согласно Второму закону Ньютона:

Fтр+Fдавления+Fтяж=0,

Учитывая, что 12)=р, dv равно:

Интегрируем:

Постоянную интегрирования находим из условия, что при r=R скорость v=0 (слои, прилегающие непосредственно к трубе, неподвижны):

Скорость частиц жидкости в зависимости от расстояния от оси равна:

Объем жидкости, протекающий через некоторое сечение трубки в пространстве между циллиндрическими поверхностями радиусами r и r+dr за время t, определяется по формуле dV=2rdrvt или:

Полный объем жидкости, протекающей через сечение капилляра за время t:

В случае, когда пренебрегаем силой тяжести жидкости (горизонтальный капилляр), объем жидкости, протекающий через сечение капилляра выражается формулой Пуазейля:

Формулу 20 можно преобразовать: разделим обе части этого выражения на время истечения t. Слева получим объемную скорость течения жидкости Q (объем жидкости, протекающий через сечение за единицу времени). Величину 8l/ 8R4 обозначим через Х. Тогда формула 20 принимает вид:

Такая запись формулы Пуазейля (ее еще называют уравнением Гагена-Пуазейля) аналогична закону Ома для участка электрической цепи.

Можно провести аналогию между законами гидродинамики и законами протекания электрического тока по электрическим цепям. Объемная скорость течения жидкости Q является гидродинамическим аналогом силы электрического тока I. Гидродинамическим аналогом разности потенциалов 1-2 является перепад давлений Р1 - Р2. Закон Ома I = (1-2)/R имеет своим гидродинамическим аналогом формулу 20. Величина Х представляет собой гидравлическое сопротивление - аналог электрического сопротивления R.