Глава 21 обмен сложных липидов
К сложным липидам относят такие соединения, которые, помимо липидного, содержат и нелипидный компонент (белок, углевод или фосфат). Соответственно существуют протеолипиды, гликолипиды и фосфолипиды.В отличие от простых липидов, используемых в качестве энергетического материала, сложные липиды выполняют пластические функции и используются главным образом как структурные компоненты биологических мембран.Протеолипидыявляются структурными компонентами в миелиновых оболочках нервных клеток, в синаптических мембранах и внутренних мембранах митохондрий.Гликолипидыучаствуют в функционировании мембран: вовлечены в процессы рецепции, участвуют в контроле и регуляции межклеточных контактов. Обладают высокой тканевой специфичностью и выступают в роли антигенов клеточной поверхности.Фосфолипиды(ФЛ) играют важную роль в структуре и функционировании клеточных мембран, активации мембранных и лизосомальных ферментов, в проведении нервных импульсов, свертывании крови, иммунологических реакциях, процессах клеточной пролиферации и регенерации тканей, в переносе электронов в ЦТД.
Образование ФЛнаиболее интенсивно происходит в печени, стенке кишечника, семенниках, яичниках и молочной железе. Синтез ФЛ, содержащих холин и этаноламин начинается с активации азотистых оснований при участии АТФ и соответствующих киназ. При синтезе фосфатидилинозитола на первом этапе происходит взаимодействие фосфатидной кислоты с ЦТФ, ведущее к образованию цитидиндифосфатдиацилглицерола, который реагирует с инозитолом, образуя фосфатидилинозитол.
Помимо путей синтеза индивидуальных ФЛ, имеются пути их взаимопревращений, целесообразность которых, очевидно, связана с необходимостью обеспечения тканей требуемым ФЛ в нужный момент.
Для синтеза фосфатидилхолинов, и в меньшей степени – сфингомиелинов, нужен холин или метионин, потребность в которых в значительной степени покрывается за счет пищевых источников. При длительном недостатке в пище холина и метионина наблюдается развитие жировой инфильтрации печени, при которой содержание липидов, главным образом ТАГ, может достигать в расчете на сухую массу ткани 45 %, против 7-14 % в норме. Механизм развития жировой инфильтрации печени связан с недостаточным синтезом фосфатидилхолинов и сфингомиелинов, необходимых для формирования в этом органе ЛП. На образование последних, наряду с ФЛ, используются значительные количества ТАГ и холестерола. Сформированные в печени ЛП, в частности богатые триацилглицеролами ЛПОНП, поступают в кровяное русло. Следовательно, образование ЛП можно рассматривать как важнейший путь утилизации печеночных липидов. Поэтому недостаточный синтез в печени содержащих холин ФЛ нарушает образование ЛП и ведет к накоплению в этом органе ТАГ и ХС. По этой причине холин, метионин, а также фосфатидилхолин относятся к группелипотропных веществ, прием которых с пищей предотвращает развитие жировой инфильтрации печени.
Распад фосфолипидовможет происходить при участии нескольких ферментов, каждый из которых катализирует гидролитический разрыв строго определеннной связи. Гидролиз некоторых ФЛ под действием фосфолипаз имеет значение не только как путь катаболизма, но и как путь образования эйкозаноидов. Кроме того, фосфолипазы А1и А2участвуют в изменении состава жирных кислот в ФЛ, например при синтезе в эмбриональном периоде дипальмитоилфосфатидилхолина – компонента сурфактанта.
Для образования гликолипидов и сфингомиелина(сфинголипидов) вначале требуется синтез самого сфингозина. Это происходит путем конденсации пальмитоил-КоА с серином при участии пиридоксальфосфата (ПАЛФ) и ионов марганца (Рис. 21.1.).
Рис. 21.1. Схема образования сфингозина
Сфингозин подвергается ацилированию (присоединение остатка жирной кислоты), в результате образуется церамид, из которого могут синтезироваться цереброзиды, ганглиозиды, сульфатиды и сфингомиелин (Рис.21.2.).
Катаболизм сфингомиелинов и гликолипидовпроисходит в лизосомах. Исключительно важный аспект этого процесса заключается в существовании более десяти специфических лизосомных болезней накопления – сфинголипидозов. Сфинголипидозы обычно являются причиной умственной отсталости и ведут к смерти в раннем возрасте, так как происходит поражение клеток нервной ткани, где сконцентрированы гликолипиды.
В распаде сфингомиелинов (Рис.21.2.) участвует сфингомиелиназа, отщепляющая фосфохолин. Генетический дефект сфингомиелиназы – причина болезни Нимана-Пика.Дети с таким дефектом погибают в раннем возрасте. Симптомы болезни: накопление сфингомиелина в лизосомах, умственная отсталость, гепатоспленомегалия.
Сложные молекулы гликолипидов расщепляются в результате последовательных реакций гидролиза до глюкозы, галактозы, церамида и других метаболитов. Генетические дефекты любого из ферментов, обеспечивающих катаболизм этого класса липидов,
ведут к развитию заболеваний, среди которых можно назвать:
болезнь Гоше– следствие дефекта-глюкозидазы, при которой наблюдаются гепатоспленомегалия и умственная отсталость;
болезнь Тея-Сакса – следствие дефекта-гексозаминидазы, для которой характерны умственная отсталость и слепота;
генерализованный ганглиозидоз, вызываемый снижением активности-галактозидазы, также ведущий к умственной отсталости.
Рис.21.2. Биосинтез ( ) и распад ( ) сфинголипидов с указанием биохимических нарушений при сфинголипидозах.
Расщепление церамида до сфингозина и жирной кислоты осуществляется церамидазой. Генетический дефект этого фермента приводит к развитию болезни Фарбера с летальным исходом в раннем возрасте. При данной патологии в лизосомах накапливается церамид, наблюдается гепатоспленомегалия, умственная отсталость и поражения суставов.
- Курс лекций по биохимии
- Список сокращений
- Глава 1 введение в биохимию
- История развития биохимии
- Развитие медицинской биохимии в Беларуси
- Содержание предмета биохимии
- Разделы и направления биохимии
- Аминокислоты и их роль в организме
- Модифицированные аминокислоты, присутствующие в белках
- В молекуле коллагенаприсутствуют:
- Аминокислоты как лекарственные препараты
- Пептиды
- Методы разделения пептидов
- Автоматический синтез пептидов
- Биологические функции белков
- Физико-химические свойства белков
- Уровни структурной организации белков
- Предварительные исследования перед определением первичной структуры белка
- Стадии определения первичной структуры белков и полипептидов
- Методы определения n-концевых аминокислот
- Методы определения с-концевых аминокислот
- Общие закономерности, касающиеся аминокислотной последовательности белков
- Классификация шаперонов (ш)
- Роль шаперонов в фолдинге белков
- Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий
- Болезни, связанные с нарушением фолдинга белков
- Функционирование белков
- Активный центр белков и избирательность связывания его с лигандом
- Характеристика активного центра
- Глава 3 фермЕнТы. Механизм действия ферментов
- Отличия ферментов от неорганических катализаторов.
- Структура молекулы ферментов
- Кофакторы – ионы металлов
- Роль металлов в ферментативном катализе
- Активный центр фермента
- Механизм действия ферментов
- Энергетические изменения при химических реакциях
- Роль активного центра в ферментативном катализе
- Молекулярные механизмы ферментативного катализа
- Кислотно-основной катализ
- Ковалентный катализ
- Специфичность действия ферментов
- Специфичность по отношению к реакции
- Необратимое ингибирование
- Обратимое ингибирование
- Конкурентное ингибирование
- Лекарственные препараты как конкурентные ингибиторы
- Антиметаболиты как лекарственные препараты
- Неконкурентное ингибирование
- Аллостерическая регуляция
- Ферменты плазмы крови
- Энзимопатии
- Применение ферментов в медицине
- Энзимодиагностика
- Применение ферментов в качестве лекарственных средств
- Глава 5 структура и функции нуклеиновых кислот
- Структура и функции днк
- Организация генома человека
- Виды и особенности структурной организации рнк
- Гибридизация нуклеиновых кислот
- Методы изучения структуры нуклеиновых кислот
- Глава 6 биосинтез нуклеиновых кислот
- Биосинтез днк
- Репарация днк
- Биосинтез рнк
- Регуляция транскрипции
- Процессинг рнк
- Обратная транскрипция
- Глава 7 биосинтез белка
- Активация аминокислот
- Синтез белка у эукариот
- Посттрансляционные изменения белков
- Регуляция синтеза белка
- Ингибиторы матричных биосинтезов
- Использование днк-технологий в медицине
- Глава 8 введение в метаболизм
- Специфические и общие пути катаболизма
- Метаболиты в норме и при патологии
- Уровни изучения обмена веществ
- Глава 9 биологические мембраны
- Механизмы мембранного транспорта веществ
- Глава 10 энергетический обмен. Биологическое окисление
- Структурная организация цепи тканевого дыхания
- Окислительное фосфорилирование атф
- Хемиоосмотическая гипотеза Питера Митчелла (1961г.)
- Строение атф-синтазы
- Нарушения энергетического обмена
- Глава 11 типы окисления. Антиоксидантные системы
- Оксидазный тип окисления
- Пероксидазный тип окисления
- Диоксигеназный тип окисления
- Монооксигеназный тип окисления
- Активные формы кислорода (свободные радикалы)
- Перекисное окисление липидов (пол)
- Антиоксидантные системы организма
- Глава 12 гормоны – общая характеристика и механизмы действия
- Классификация гормонов
- Классификация по месту образования
- Классификация по механизму действия
- Основные свойства и особенности действия гормонов
- Рецепторы гормонов
- Механизм передачи гормональных сигналов через мембранные рецепторы
- Аденилатциклазная система.
- Гуанилатциклазная система.
- 3. Оксид азота.
- Инозитолтрифосфатная система.
- Механизм передачи гормонального сигнала через внутриклеточные рецепторы
- Передача сигналов через рецепторы, сопряженные с ионными каналами
- Глава 13 особенности действия гормонов Гормоны гипоталамуса и гипофиза
- Гормоны гипоталамуса и гипофиза
- Гормоны гипофиза
- Гормоны щитовидной железы
- Гиперфункция щитовидной железы
- Гипофункция щитовидной железы
- Гормоны поджелудочной железы
- Биологическое действие
- Гипофункция поджелудочной железы
- Гиперфункция поджелудочной железы
- Глюкагон
- Регуляция обмена ионов кальция и фосфатов
- Гиперфункция паращитовидной железы (гиперпаратиреоз)
- Гипофункция паращитовидных желез (гипопаратиреоз)
- Гормоны надпочечников Гормоны мозгового вещества надпочечников
- Биологическое действие
- Гиперфункция мозгового вещества надпочечников
- Гормоны коры надпочечников (кортикостероиды)
- Глюкокортикоиды
- Биологическое действие
- Минералокортикоиды
- Биологическое действие
- Гиперфункция коры надпочечников
- Гипофункция коры надпочечников
- Гормоны половых желёз Мужские половые гормоны
- Биологическое действие
- Анаболические стероиды
- Нарушение андрогенной функции
- Женские половые гомоны
- Биологическое действие на половые органы
- Действие на неполовые органы
- Нарушения гормональных функций яичников
- Эйкозаноиды
- Синтез эйкозаноидов
- Номенклатура эйкозаноидов
- Применение гормонов в медицине
- Глава 14 биохимия питания
- Углеводы
- Глава 15 Основы витаминологии
- Биологические функции витаминов
- Классификация витаминов
- Основные характеристики водорастворимых витаминов
- Основные характеристики жирорастворимых витаминов
- Обмен витаминов
- Обеспеченность организма витаминами
- Гиповитаминозы
- Гипервитаминозы
- Методы оценки обеспеченности организма человека витаминами
- Применение витаминов в клинической практике
- Поливитаминные препараты
- Антивитамины
- Антивитамины
- Глава 16 углеводы тканей и пищи – обмен и функции
- Всасывание моносахаридов в кишечнике
- Транспорт глюкозы из крови в клетки
- Нарушения переваривания и всасывания углеводов
- Метаболизм фруктозы
- Метаболизм галактозы
- Метаболизм лактозы
- Глава 17 пути метаболизма глюкозы
- Гликолиз
- Гликоген
- Пентозофосфатный путь (пфп)
- Глюконеогенез (гнг)
- Аланин Аланин Аланин
- Путь глюкуроновой кислоты
- Глава18 обмен гликогена
- Синтез гликогена (гликогеногенез)
- Глюкагон Адреналин
- Аденилатциклаза Аденилатциклаза
- Протеинкиназа Протеинкиназа
- Нарушения обмена гликогена
- Глава 19 липиды тканей, переваривание и транспорт липидов
- Глава 20 обмен триацилглицеролов и жирных кислот
- Регуляция синтеза триацилглицеролов
- Регуляция мобилизации триацилглицеролов
- Ожирение
- Обмен жирных кислот
- Обмен кетоновых тел
- Синтез жирных кислот
- Глава 21 обмен сложных липидов
- Глава 22 метаболизм холестерола. Биохимия атеросклероза
- Биохимия атеросклероза
- Глава 23. Обмен аминокислот. Динамическое состояние белков организма
- Переваривание белков в желудочно-кишечном тракте
- Наследственные нарушения транспорта аминокислот
- Расщепление белков в тканях
- Превращение аминокислот микрофлорой кишечника
- Пути обмена аминокислот в тканях
- Трансаминирование аминокислот
- Биологическое значение трансаминирования
- Дезаминирование аминокислот
- Окислительное дезаминирование глутамата
- Непрямое дезаминирование аминокислот
- Декарбоксилирование аминокислот
- Биогенные амины
- Пути катаболизма углеродного скелета аминокислот
- Глава 24 Образование и обезвреживание nh3в организме
- Тканевое обезвреживание аммиака
- Общее (конечное) обезвреживание аммиака
- Регуляция синтеза мочевины
- Нарушения синтеза и выведения мочевины
- Глава 25 Метаболизм отдельных аминокислот Метаболизм метионина
- Реакция активации метионина
- Синтез креатина
- Метаболизм фенилаланина и тирозина
- Нарушение обмена фенилаланина и тирозина
- Глава 26 обмЕн нуклеотидов
- Биосинтез пуриновых нуклеотидов
- Биосинтез пиримидиновых нуклеотидов
- Распад нуклеиновых кислот в желудочно-кишечном тракте и тканях
- Нуклеопротеины
- Нарушения обмена нуклеотидов Ксантинурия
- Глава 27 регуляция и взаимосвязь метаболизма
- Аллостерическая регуляция метаболических путей
- Взаимосвязь метаболизма
- Глава 28 биохимия печени
- Роль печени в углеводном обмене
- 5. В печени происходит синтез глюкуроновой кислоты. Роль печени в липидном обмене
- Роль печени в обмене аминокислот и белков
- Обезвреживающая функция печени
- Обезвреживание нормальных метаболитов
- Обезвреживание ксенобиотиков
- Катаболизм гемоглобина
- Желтухи. Дифференциальная диагностика
- Желтуха новорожденных
- Биохимические механизмы развития печеночной недостаточности
- Биохимические методы диагностики поражений печени
- Глава 29 Водно-электролитный обмен Распределение жидкости в организме
- Состав жидкостей
- Растворенные вещества
- Характеристики жидкостей
- Вода, биологическая роль, обмен воды
- Обмен воды
- Регуляция объема внеклеточной жидкости
- Роль системы ренин-ангиотензин
- Активация системы
- Предсердный натрийуретический фактор
- Нарушения водно-электролитного обмена и кислотно-основного равновесия
- Нарушения кислотно-основного равновесия
- Минеральные компоненты тканей, биологические функции
- Основные биологические функции
- Натрий, биологическая роль, обмен, регуляция
- Калий, биологическая роль, обмен, регуляция
- Кальций, биологическая роль, обмен, регуляция
- Фосфор, биологическая роль, обмен, регуляция
- Эссенциальные микроэлементы
- Глава № 30 биохимия крови
- Общая характеристика
- Функции крови
- Особенности метаболизма в форменных элементах крови
- Гемоглобин человека
- Производные гемоглобина
- Варианты гемоглобина в онтогенезе
- Гемоглобинопатии
- Обмен железа
- Железодефицитные анемии
- Белки плазмы крови
- Характеристика белков сыворотки крови
- Патологии системы свертывания крови. Гемофилии
- Диссеминированное внутрисосудистое свертывание (двс-синдром)
- Глава 31 биохимия почек
- Особенности биохимических процессов в почечной ткани
- Глава 32 особенности метаболизма в нервной ткани
- Функции аксонального плазматического тока
- Гемато-энцефалический барьер (гэб)
- Общие особенности метаболизма нервной ткани
- Обмен свободных аминокислот в головном мозге
- Нейропептиды
- Энергетический обмен в нервной ткани
- Особенности углеводного обмена в ткани головного мозга
- Липидный обмен в нервной ткани
- Обмен липидов в нервной ткани имеет следующие особенности
- Роль медиаторов в передаче нервных импульсов
- Нейрохимические основы памяти
- Спинномозговая жидкость (ликвор или цереброспинальная жидкость)
- Глава 33 биохимия мышечной ткани
- Белки мышечной ткани
- Биохимические механизмы сокращения и расслабления мышц
- Роль ионов кальция в регуляции мышечного сокращения
- Деполяризация т-трубочек
- Глава 34 Биохимия соединительной ткани.
- Эластин
- Протеогликаны и гликопротеины