Глава 19 липиды тканей, переваривание и транспорт липидов
Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях. Существует несколько классификаций липидов: физико-химическая, биологическая или физиологическая и структурная. Наиболее сложной является структурная классификация, основанная на структурных особенностях этих соединений. Согласно этой классификации, все липиды делятся на омыляемыеинеомыляемые. К омыляемым относят те соединения, которые при щелочном гидролизе образуют соли жирных кислот (мыла), неомыляемые же липиды щелочному гидролизу не подвергаются.
Рис. 19.1. Классификация липидов.
*В некоторых классификациях сфингомиелины, сульфатиды, ганглиозиды и цереброзиды объединяют в группу сфинголипидов, так как все они содержат аминоспирт сфингозин.
Разделение липидов по физико-химическим свойствамучитывает степень их полярности. По этому признаку липиды делятся на нейтральные илинеполярные(не имеющие заряда), иполярные(несущие заряд), например, фосфолипиды и жирные кислоты. Пофизиологическому значению липиды делятся нарезервные иструктурные.Резервные липиды депонируются в больших количествах и затем расходуются для энергетических нужд организма. К резервным липидам относятся триацилглицеролы (ТАГ). Все остальные липиды можно отнести к структурным. Они не имеют особой энергетической ценности, но участвуют в построении биологических мембран и защитных покровов.
Характерным структурным компонентом большинства липидов являются жирные кислоты. Это длинноцепочечные органические кислоты, состоящие из 4-24 углеродных атомов и содержащие одну карбоксильную группу и длинный неполярный углеводородный «хвост». В составе ТАГ жирные кислоты выполняют функцию депонирования энергии. В составе фосфолипидов и сфинголипидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. В клетках и тканях жирные кислоты встречаются в ковалентно связанной форме в составе липидов различных классов. В свободном состоянии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином. Большинство жирных кислот образуется в организме человека, однако линолевая и линоленовая не синтезируются, поэтому обязательно должны поступать с пищей. Эти кислоты называются незаменимыми или эссенциальными. К ним относят и арахидоновую кислоту, которая может синтезироваться в организме из линолевой при достаточном поступлении последней.
Функции липидов важны и разнообразны:
субстратно-энергетическая:жир служит в организме весьма эффективным источником энергии либо при непосредственном использовании, либо потенциально – в форме запасов жировой ткани;
структурная (пластическая):липиды в виде комплекса с белками являются структурными элементами мембран клеток и клеточных органелл;
транспортная: являясь одним из основных компоненнтов клеточных мембран, липиды определяют транспорт веществ в клетки;
механическая защита:жировая прослойка предохраняет тело и органы от механических повреждений;
теплоизолирующая: благодаря выраженной низкой термопроводимости, липиды сохраняют тепло в организме;
электроизолирующая:липиды являются электроизолирующим материалом, участвуя таким образом в передаче нервного импульса и, соответственно, в функционировании нервной системы;
эмульгирующая:фосфоглицеролы и желчные кислоты стабилизируют эмульсию на поверхности раздела фаз масло-вода;
гормональная (регуляторная):стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции водно-солевого обменов, половых функций; эйкозаноиды, производные полиеновых жирных кислот, вызывают разнообразные биологические эффекты;
витаминная:в натуральных пищевых жирах содержатся жирорастворимые витамины и незаменимые жирные кислоты;
растворяющая: одни липиды являются растворителями для других липидных веществ.
Липиды тканей человека. Липиды составляют около 10-12% массы тела человека. В среднем в теле взрослого человека содержится около 10-12 кг липидов, из них 2-3 кг приходится на структурные липиды, а остальное количество – на резервные. Основная масса резервных липидов (около 98%) сосредоточена в жировой ткани и представлена ТАГ. Эти липиды являются источником потенциальной химической энергии, доступной в периоды голодания.
Содержание липидов в тканях человека существенно различается. В жировой ткани они составляют до 75% сухого веса. В нервной ткани липидов содержится до 50% сухого веса, основные из них фосфолипиды и сфингомиелины (30%), холестерол (10%), ганглиозиды и цереброзиды (7%). В печени общее количество липидов в норме не превышает 10-14%.
Жирные кислоты, характерные для организма человека, содержат чётное число атомов углерода, чаще всего – от 16 до 20. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Ненасыщенные жирные кислоты представлены моноеновыми и полиеновыми. Двойные связи в жирных кислотах в организме человека имеют цис-конфигурацию Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными. В фосфолипидах мембран ненасыщенных кислот может быть до 80-85%, а в составе подкожного жира – до 60%.
Липиды пищи, их переваривание и всасывание. Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности рациона. Жидкие жиры (масла), содержащие в своем составе незаменимые жирные кислоты, должны составлять не менее одной трети жиров пищи.
В ротовой полости и желудке взрослого человека нет ферментов и условий для переваривания липидов. Основное место расщепления липидов – тонкий кишечник. Для увеличения поверхности соприкосновения с гидрофильными ферментами жиры должны эмульгироваться (разбиться на мелкие капли). Эмульгирование происходит под действием солей желчных кислот. Эмульгированию также способствует перистальтика кишечника и выделение пузырьков СО2, происходящее при нейтрализации кислого содержимого желудка бикарбонатом, выделяющимся в составе сока поджелудочной железы.
Основная масса липидов пищи представлена ТАГ, меньше фосфолипидами (ФЛ) и стероидами. Постадийный гидролиз ТАГ осуществляется панкреатической липазой. Она секретируется в кишечник в неактивном виде и активируетсяколипазойи желчными кислотами. Панкреатическая липаза гидролизует жиры преимущественно в положениях 1 и 3, поэтому основными продуктами гидролиза являются глицерол, свободные жирные кислоты, моноацилглицеролы.
Фосфолипиды гидролизуются панкреатическими фосфолипазами А1, А2, С и D. Продуктами переваривания являются глицерол, жирные кислоты, фосфорная кислота и азотистые спирты (холин, этаноламин, серин, инозитол). Эфиры холестерола (ЭХЛ) расщепляются панкреатической холестеролэстеразой на холестерол (ХЛ) и жирные кислоты. Активность фермента проявляется в присутствии желчных кислот.
Всасывание липидов происходит в проксимальной части тонкого кишечника. 3-10% жиров пищи всасывается без гидролиза в виде триацилглицеролов. Основная же часть липидов всасывается лишь в виде продуктов расщепления. Всасывание гидрофильных продуктов переваривания (глицерол, жирные кислоты с числом углеродных атомов менее 12, фосфорная кислота, холин, серин, этаноламин и др.) происходит самостоятельно, а гидрофобные (ХЛ, длинноцепочечные жирные кислоты, ди- и моноглицеролы) всасываются в составе мицелл. Главную роль в образовании мицелл играют желчные кислоты. Мицелла – это сферический комплекс, в центре которого находятся транспортируемые гидрофобные продукты переваривания, окруженные желчными кислотами. Мицеллы сближаются со щеточной каймой клеток слизистой оболочки кишечника, и липидные компоненты мицелл диффундируют через мембраны внутрь клеток. Вместе с продуктами гидролиза липидов всасываются жирорастворимые витамины и соли желчных кислот. Желчные кислоты далее по воротной вене возвращаются в печень, а липидные компоненты включаются в процесс ресинтеза. В ресинтезе ТАГ участвуют не только жирные кислоты, всосавшиеся из кишечника, но и жирные кислоты, синтезированные в организме, поэтому по составу ресинтезированные жиры отличаются от полученных с пищей. Однако возможности адаптировать в процессе ресинтеза состав пищевых жиров к составу жиров организма человека ограничены, поэтому при поступлении жиров с необычными жирными кислотами в адипоцитах появляются жиры, содержащие такие кислоты. В клетках слизистой оболочки кишечника происходит синтез ФЛ, а также образование эфиров холестерола, катализируемое ацилхолестеролацилтрансферазой.
Транспорт липидов. Липиды в водной среде нерастворимы, поэтому для их транспорта в организме образуются комплексы липидов с белками – липопротеины (ЛП). Различают экзо- и эндогенный транспорт липидов. К экзогенному относят транспорт липидов, поступивших с пищей, а к эндогенному – перемещение липидов, синтезированных в организме.
Существует несколько типов ЛП, но все они имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные – к ядру, в котором находятся транспортируемые липиды. Апопротеины выполняют несколько функций:
формируют структуру липопротеинов (например, В-48 – основной белок ХМ, В-100 – основной белок ЛПОНП, ЛППП, ЛПНП);
взаимодействуют с рецепторами на поверхности клеток, определяя, какими тканями будет захватываться данный тип липопротеинов (апопротеин В-100, Е);
являются ферментами или активаторами ферментов, действующих на липопротеины (С-II – активатор ЛП-липазы, А-I – активатор лецитин:холестеролацилтрансферазы).
Таблица 19.1.
Характеристика и состав липопротеинов
Типы ЛП | ХМ | ЛПОНП | ЛППП | ЛПНП | ЛПВП |
Состав, % белки ФЛ ХС ЭХС ТАГ |
2 3 2 3 85 |
10 18 7 10 55 |
11 23 8 30 26 |
22 21 8 42 7 |
50 27 4 16 3 |
Функции | Перенос экзоген-ных липидов | Перенос эндоген-ных липидов | Предшест-венник ЛПНП | Перенос ХС в ткани | Перенос ХС из тканей, донор апопротеинов А, С-II |
Место синтеза | Кишечник | Печень | Кровь | Кровь | Печень |
Диаметр, нм | > 120 | 30-100 |
| 21-100 | 7-15 |
Основные аполипо - протеины | В-48 С-II Е | В-100 С-II Е | В-100 Е | В-100 | А-I С-II Е |
При экзогенном транспорте ресинтезированные в энтероцитах ТАГ вместе с фосфолипидами, холестеролом и белками образуют ХМ, и в таком виде секретируются сначала в лимфу, а затем попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся апопротеины Е (апо Е) и С-II (апо С-II), таким образом ХМ превращаются в «зрелые». ХМ имеют довольно большой размер, поэтому после приема жирной пищи они придают плазме крови опалесцирующий, похожий на молоко, вид. Попадая в систему кровообращения, ХМ быстро подвергаются катаболизму, и исчезают в течение нескольких часов. Время разрушения ХМ зависит от гидролиза ТАГ под действием липопротеинлипазы (ЛПЛ). Этот фермент синтезируется и секретируется жировой и мышечной тканями, клетками молочных желез. Секретируемая ЛПЛ связывается с поверхностью эндотелиальных клеток капилляров тех тканей, где она синтезировалась. Регуляция секреции имеет тканевую специфичность. В жировой ткани синтез ЛПЛ стимулируется инсулином. Тем самым обеспечивается поступление жирных кислот для синтеза и хранения в виде ТАГ. При сахарном диабете, когда отмечается дефицит инсулина, уровень ЛПЛ снижается. В результате в крови накапливается большое количество ЛП. В мышцах, где ЛПЛ участвует в поставке жирных кислот для окисления между приемами пищи, инсулин подавляет образование этого фермента.
На поверхности ХМ различают 2 фактора, необходимых для активности ЛПЛ – апоС-II и фосфолипиды. АпоС-II активирует этот фермент, а фосфолипиды участвуют в связывании фермента с поверхностью ХМ. В результате действия ЛПЛ на молекулы ТАГ образуются жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткани, где может депонироваться в виде ТАГ (жировая ткань) или использоваться в качестве источника энергии (мышцы). Глицерол транспортируется кровью в печень, где в абсорбтивный период может быть использован для синтеза жиров.
В результате действия ЛПЛ количество нейтральных жиров в ХМ снижается на 90%, уменьшаютя размеры частиц, апоС-II переносится обратно на ЛПВП. Образовавшиеся частицы называются остаточными ХМ (ремнантами). Они содержат ФЛ, ХС, жирорастворимые витамины, апоВ-48 и апоЕ. Остаточные ХМ захватываются гепатоцитами, которые имеют рецепторы, взаимодействующие с этими апопротеинами. Под действием ферментов лизосом белки и липиды гидролизуются, а затем утилизируются. Жирорастворимые витамины и экзогенный ХС используются в печени или транспортируются в другие органы.
При эндогенном транспорте ресинтезированные в печени ТАГ и ФЛ включаются в состав ЛПОНП, куда входят апоВ100 и апоС. ЛПОНП представляют собой основную транспортную форму для эндогенных ТАГ. Попав в кровь, ЛПОНП получают апоС-II и апоЕ от ЛПВП и подвергаются действию ЛПЛ. В ходе этого процесса ЛПОНП сначала превращаются в ЛППП, а затем в ЛПНП. Основным липидом ЛПНП становится ХС, который в их составе переносится к клеткам всех тканей. Образовавшиеся в ходе гидролиза жирные кислоты поступают в ткани, а глицерол кровью транспортируется в печень, где опять может использоваться для синтеза ТАГ.
Все изменения содержания ЛП в плазме крови, характеризующиеся их повышением, снижением или полным отсутствием, объединяют под названием дислипопротеинемий. Дислипопротеинемия может быть либо специфическим первичным проявлением нарушений в обмене липидов и липопротеинов, либо сопутствующим синдромом при некоторых заболеваниях внутренних органов (вторичные дислипопротеинемии). При успешном лечении основного заболевания они исчезают.
К гиполипопротеинемиям относят следующие состояния.
Абеталипопротеинемиявозникает при редком наследственном заболевании – дефекте гена апопротеина В, когда нарушается синтез белков апоВ-100 в печени и апоВ-48 в кишечнике. В результате в клетках слизистой оболочки кишечника не формируются ХМ, а в печени – ЛПОНП, и в клетках этих органов накапливаются капельки жира.
Семейная гипобеталипопротеинемия:концентрация ЛП, содержащих апоВ составляет лишь 10-15% нормального уровня, но организм способен образовывать ХМ.
Семейная недостаточность -ЛП (болезнь Тангира): в плазме крови практически не обнаруживаются ЛПВП, а в тканях накапливается большое количество эфиров ХС, у пациентов отсутствует апоС-II, являющийся активатором ЛПЛ, что ведет к характерному для данного состояния повышению концентрации ТАГ в плазме крови.
Среди гиперлипопротеинемий различают следующие типы.
Тип I - гиперхиломикронемия. Скорость удаления ХМ из кровотока зависит от активности ЛПЛ, присутствия ЛПВП, поставляющих апопротеины С-IIи Е для ХМ, активности переноса апоС-IIи апоЕ на ХМ. Генетическе дефекты любого из белков, участвующих в метаболизме ХМ, приводят к развитию семейной гиперхиломикронемии – накоплению ХМ в крови. Заболевание проявляется в раннем детстве, характеризуется гепатоспленомегалией, панкреатитом, абдоминальными болями. Как вторичный признак наблюдается у больных сахарным диабетом, нефротическим синдромом, гипотиреозом, а также при злоупотреблении алкоголем. Лечение: диета с низким содержанием липидов (до 30 г/сут) и высоким содержанием углеводов.
Тип II – семейная гиперхолестеролемия (гипер--липопротеинемия). Этот тип делят на 2 подтипа:IIа, характеризующийся высоким содержанием в крови ЛПНП, иIIб – с повышенным уровнем как ЛПНП, так и ЛПОНП. Заболевание связано с нарушением рецепции и катаболизма ЛПНП (дефект клеточных рецепторов для ЛПНП или изменение структуры ЛПНП), сопровождается усилением биосинтеза холестерола, апо-В и ЛПНП. Это наиболее серьезная патология в обмене ЛП: степень риска развития ИБС у пациентов с этим типом нарушения возрастает в 10-20 раз по сравнению со здоровыми лицами. Как вторичное явление гиперлипопротеинемияIIтипа может развиваться при гипотиреозе, нефротическом синдроме. Лечение: диета с низким содержанием холестерола и насыщенных жиров.
Тип III – дис--липопротеинемия (широкополосная беталипопротенемия)обусловлена аномальным составом ЛПОНП. Они обогащены свободным ХС и дефектным апо-Е, тормозящим активность печеночной ТАГ-липазы. Это ведет к нарушениям катаболизма ХМ и ЛПОНП. Заболевание проявляется в возрасте 30-50 лет. Состояние характерируется высоким содержанием остатков ЛПОНП, гиперхолестеролемией и триацилглицеролемией, наблюдаются ксантомы, атеросклеротические поражения периферических и коронарных сосудов. Лечение: диетотерапия, направленная на снижение веса.
Тип IV – гиперпре--липопротеинемия (гипертриацилглицеролемия). Первичный вариант обусловлен уменьшением активности ЛПЛ, повышение уровня ТАГ в плазме крови происходит за счет фракции ЛПОНП, аккумуляции ХМ при этом не наблюдается. Встречается только у взрослых, характеризуется развитием атеросклероза сначала коронарных, затем периферических артерий. Заболевание часто сопровождается понижением толерантности к глюкозе. Как вторичное проявление встречается при панкреатите, алкоголизме. Лечение: диетотерапия, направленная на снижение веса.
Тип V – гиперпре--липопротеинемия с гиперхиломикронемией.При этом типе патологии изменения фракций ЛП крови носят сложный характер: повышено содержание ХМ и ЛПОНП, выраженность фракций ЛПНП и ЛПВП уменьшена. Больные часто имеют избыточную массу тела, возможно развитие гепатоспленомегалии, панкреатита, атеросклероз развивается не во всех случаях. Как вторичное явление гиперлипопротеинемия V типа может наблюдаться при инсулинзависимом сахарном диабете, гипотиреозе, панкреатите, алкоголизме, гликогенозеIтипа. Лечение: диетотерапия, направленная на снижение веса, диета с невысоким содержанием углеводов и жиров.
Нарушения переваривания и всасывания липидов. Поступившие с пищей жиры, если они приняты в умеренном количестве (не более 100-150 г), усваиваются почти полностью, и при нормальном пищеварении кал содержит не более 5% жиров. Остатки жировой пищи выделяются преимущественно в виде мыл. При нарушениях переваривания и всасывания липидов наблюдается избыток липидов в кале – стеаторея (жирный стул). Различают 3 типа стеаторей.
Панкреатогенная стеатореявозникает при дефиците панкреатической липазы. Причинами такого состояния могут быть хронический панкреатит, врожденнная гипоплазия поджелудочной железы, врожденный или приобретенный дефицит панкреатической липазы, а также муковисцидоз, когда наряду с другими железами повреждается и поджелудочная. В этом случае в кале содержатся желчные пигменты, понижено содержание свободных жирных кислот и повышено ТАГ.
Гепатогенная стеатореявызывается закупоркой желчных протоков. Это происходит при врожденной атрезии желчных путей, в результате сужения желчного протока желчными камнями, или сдавления его опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров, и, следовательно, к ухудшению их переваривания. В кале больных отсутствуют желчные пигменты, высоко содержание ТАГ, жирных кислот и мыл.
Энтерогенная стеатореяотмечается при интестинальной липодистрофии, амилоидозе, обширной резекции тонкого кишечника, то есть процессах, сопровождающихся снижением метаболической активности слизистой оболочки кишечника. Для этой патологии характерен сдвиг рН кала в кислую сторону, рост содержания в кале жирных кислот.
Всасывание жиров из кишечника происходит по лимфатическим путям при активной сократительной деятельности ворсинок, поэтому жировой стул может наблюдаться также при нарушении лимфооттока в случае паралича tunicae muscularis mucosae, а также при туберкулезе и опухолях мезентериальных лимфатических узлов, находящихся на пути оттока лимфы. Ускоренное продвижение пищевого химуса по тонкому кишечнику также может быть причиной нарушения всасывания жира.
- Курс лекций по биохимии
- Список сокращений
- Глава 1 введение в биохимию
- История развития биохимии
- Развитие медицинской биохимии в Беларуси
- Содержание предмета биохимии
- Разделы и направления биохимии
- Аминокислоты и их роль в организме
- Модифицированные аминокислоты, присутствующие в белках
- В молекуле коллагенаприсутствуют:
- Аминокислоты как лекарственные препараты
- Пептиды
- Методы разделения пептидов
- Автоматический синтез пептидов
- Биологические функции белков
- Физико-химические свойства белков
- Уровни структурной организации белков
- Предварительные исследования перед определением первичной структуры белка
- Стадии определения первичной структуры белков и полипептидов
- Методы определения n-концевых аминокислот
- Методы определения с-концевых аминокислот
- Общие закономерности, касающиеся аминокислотной последовательности белков
- Классификация шаперонов (ш)
- Роль шаперонов в фолдинге белков
- Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий
- Болезни, связанные с нарушением фолдинга белков
- Функционирование белков
- Активный центр белков и избирательность связывания его с лигандом
- Характеристика активного центра
- Глава 3 фермЕнТы. Механизм действия ферментов
- Отличия ферментов от неорганических катализаторов.
- Структура молекулы ферментов
- Кофакторы – ионы металлов
- Роль металлов в ферментативном катализе
- Активный центр фермента
- Механизм действия ферментов
- Энергетические изменения при химических реакциях
- Роль активного центра в ферментативном катализе
- Молекулярные механизмы ферментативного катализа
- Кислотно-основной катализ
- Ковалентный катализ
- Специфичность действия ферментов
- Специфичность по отношению к реакции
- Необратимое ингибирование
- Обратимое ингибирование
- Конкурентное ингибирование
- Лекарственные препараты как конкурентные ингибиторы
- Антиметаболиты как лекарственные препараты
- Неконкурентное ингибирование
- Аллостерическая регуляция
- Ферменты плазмы крови
- Энзимопатии
- Применение ферментов в медицине
- Энзимодиагностика
- Применение ферментов в качестве лекарственных средств
- Глава 5 структура и функции нуклеиновых кислот
- Структура и функции днк
- Организация генома человека
- Виды и особенности структурной организации рнк
- Гибридизация нуклеиновых кислот
- Методы изучения структуры нуклеиновых кислот
- Глава 6 биосинтез нуклеиновых кислот
- Биосинтез днк
- Репарация днк
- Биосинтез рнк
- Регуляция транскрипции
- Процессинг рнк
- Обратная транскрипция
- Глава 7 биосинтез белка
- Активация аминокислот
- Синтез белка у эукариот
- Посттрансляционные изменения белков
- Регуляция синтеза белка
- Ингибиторы матричных биосинтезов
- Использование днк-технологий в медицине
- Глава 8 введение в метаболизм
- Специфические и общие пути катаболизма
- Метаболиты в норме и при патологии
- Уровни изучения обмена веществ
- Глава 9 биологические мембраны
- Механизмы мембранного транспорта веществ
- Глава 10 энергетический обмен. Биологическое окисление
- Структурная организация цепи тканевого дыхания
- Окислительное фосфорилирование атф
- Хемиоосмотическая гипотеза Питера Митчелла (1961г.)
- Строение атф-синтазы
- Нарушения энергетического обмена
- Глава 11 типы окисления. Антиоксидантные системы
- Оксидазный тип окисления
- Пероксидазный тип окисления
- Диоксигеназный тип окисления
- Монооксигеназный тип окисления
- Активные формы кислорода (свободные радикалы)
- Перекисное окисление липидов (пол)
- Антиоксидантные системы организма
- Глава 12 гормоны – общая характеристика и механизмы действия
- Классификация гормонов
- Классификация по месту образования
- Классификация по механизму действия
- Основные свойства и особенности действия гормонов
- Рецепторы гормонов
- Механизм передачи гормональных сигналов через мембранные рецепторы
- Аденилатциклазная система.
- Гуанилатциклазная система.
- 3. Оксид азота.
- Инозитолтрифосфатная система.
- Механизм передачи гормонального сигнала через внутриклеточные рецепторы
- Передача сигналов через рецепторы, сопряженные с ионными каналами
- Глава 13 особенности действия гормонов Гормоны гипоталамуса и гипофиза
- Гормоны гипоталамуса и гипофиза
- Гормоны гипофиза
- Гормоны щитовидной железы
- Гиперфункция щитовидной железы
- Гипофункция щитовидной железы
- Гормоны поджелудочной железы
- Биологическое действие
- Гипофункция поджелудочной железы
- Гиперфункция поджелудочной железы
- Глюкагон
- Регуляция обмена ионов кальция и фосфатов
- Гиперфункция паращитовидной железы (гиперпаратиреоз)
- Гипофункция паращитовидных желез (гипопаратиреоз)
- Гормоны надпочечников Гормоны мозгового вещества надпочечников
- Биологическое действие
- Гиперфункция мозгового вещества надпочечников
- Гормоны коры надпочечников (кортикостероиды)
- Глюкокортикоиды
- Биологическое действие
- Минералокортикоиды
- Биологическое действие
- Гиперфункция коры надпочечников
- Гипофункция коры надпочечников
- Гормоны половых желёз Мужские половые гормоны
- Биологическое действие
- Анаболические стероиды
- Нарушение андрогенной функции
- Женские половые гомоны
- Биологическое действие на половые органы
- Действие на неполовые органы
- Нарушения гормональных функций яичников
- Эйкозаноиды
- Синтез эйкозаноидов
- Номенклатура эйкозаноидов
- Применение гормонов в медицине
- Глава 14 биохимия питания
- Углеводы
- Глава 15 Основы витаминологии
- Биологические функции витаминов
- Классификация витаминов
- Основные характеристики водорастворимых витаминов
- Основные характеристики жирорастворимых витаминов
- Обмен витаминов
- Обеспеченность организма витаминами
- Гиповитаминозы
- Гипервитаминозы
- Методы оценки обеспеченности организма человека витаминами
- Применение витаминов в клинической практике
- Поливитаминные препараты
- Антивитамины
- Антивитамины
- Глава 16 углеводы тканей и пищи – обмен и функции
- Всасывание моносахаридов в кишечнике
- Транспорт глюкозы из крови в клетки
- Нарушения переваривания и всасывания углеводов
- Метаболизм фруктозы
- Метаболизм галактозы
- Метаболизм лактозы
- Глава 17 пути метаболизма глюкозы
- Гликолиз
- Гликоген
- Пентозофосфатный путь (пфп)
- Глюконеогенез (гнг)
- Аланин Аланин Аланин
- Путь глюкуроновой кислоты
- Глава18 обмен гликогена
- Синтез гликогена (гликогеногенез)
- Глюкагон Адреналин
- Аденилатциклаза Аденилатциклаза
- Протеинкиназа Протеинкиназа
- Нарушения обмена гликогена
- Глава 19 липиды тканей, переваривание и транспорт липидов
- Глава 20 обмен триацилглицеролов и жирных кислот
- Регуляция синтеза триацилглицеролов
- Регуляция мобилизации триацилглицеролов
- Ожирение
- Обмен жирных кислот
- Обмен кетоновых тел
- Синтез жирных кислот
- Глава 21 обмен сложных липидов
- Глава 22 метаболизм холестерола. Биохимия атеросклероза
- Биохимия атеросклероза
- Глава 23. Обмен аминокислот. Динамическое состояние белков организма
- Переваривание белков в желудочно-кишечном тракте
- Наследственные нарушения транспорта аминокислот
- Расщепление белков в тканях
- Превращение аминокислот микрофлорой кишечника
- Пути обмена аминокислот в тканях
- Трансаминирование аминокислот
- Биологическое значение трансаминирования
- Дезаминирование аминокислот
- Окислительное дезаминирование глутамата
- Непрямое дезаминирование аминокислот
- Декарбоксилирование аминокислот
- Биогенные амины
- Пути катаболизма углеродного скелета аминокислот
- Глава 24 Образование и обезвреживание nh3в организме
- Тканевое обезвреживание аммиака
- Общее (конечное) обезвреживание аммиака
- Регуляция синтеза мочевины
- Нарушения синтеза и выведения мочевины
- Глава 25 Метаболизм отдельных аминокислот Метаболизм метионина
- Реакция активации метионина
- Синтез креатина
- Метаболизм фенилаланина и тирозина
- Нарушение обмена фенилаланина и тирозина
- Глава 26 обмЕн нуклеотидов
- Биосинтез пуриновых нуклеотидов
- Биосинтез пиримидиновых нуклеотидов
- Распад нуклеиновых кислот в желудочно-кишечном тракте и тканях
- Нуклеопротеины
- Нарушения обмена нуклеотидов Ксантинурия
- Глава 27 регуляция и взаимосвязь метаболизма
- Аллостерическая регуляция метаболических путей
- Взаимосвязь метаболизма
- Глава 28 биохимия печени
- Роль печени в углеводном обмене
- 5. В печени происходит синтез глюкуроновой кислоты. Роль печени в липидном обмене
- Роль печени в обмене аминокислот и белков
- Обезвреживающая функция печени
- Обезвреживание нормальных метаболитов
- Обезвреживание ксенобиотиков
- Катаболизм гемоглобина
- Желтухи. Дифференциальная диагностика
- Желтуха новорожденных
- Биохимические механизмы развития печеночной недостаточности
- Биохимические методы диагностики поражений печени
- Глава 29 Водно-электролитный обмен Распределение жидкости в организме
- Состав жидкостей
- Растворенные вещества
- Характеристики жидкостей
- Вода, биологическая роль, обмен воды
- Обмен воды
- Регуляция объема внеклеточной жидкости
- Роль системы ренин-ангиотензин
- Активация системы
- Предсердный натрийуретический фактор
- Нарушения водно-электролитного обмена и кислотно-основного равновесия
- Нарушения кислотно-основного равновесия
- Минеральные компоненты тканей, биологические функции
- Основные биологические функции
- Натрий, биологическая роль, обмен, регуляция
- Калий, биологическая роль, обмен, регуляция
- Кальций, биологическая роль, обмен, регуляция
- Фосфор, биологическая роль, обмен, регуляция
- Эссенциальные микроэлементы
- Глава № 30 биохимия крови
- Общая характеристика
- Функции крови
- Особенности метаболизма в форменных элементах крови
- Гемоглобин человека
- Производные гемоглобина
- Варианты гемоглобина в онтогенезе
- Гемоглобинопатии
- Обмен железа
- Железодефицитные анемии
- Белки плазмы крови
- Характеристика белков сыворотки крови
- Патологии системы свертывания крови. Гемофилии
- Диссеминированное внутрисосудистое свертывание (двс-синдром)
- Глава 31 биохимия почек
- Особенности биохимических процессов в почечной ткани
- Глава 32 особенности метаболизма в нервной ткани
- Функции аксонального плазматического тока
- Гемато-энцефалический барьер (гэб)
- Общие особенности метаболизма нервной ткани
- Обмен свободных аминокислот в головном мозге
- Нейропептиды
- Энергетический обмен в нервной ткани
- Особенности углеводного обмена в ткани головного мозга
- Липидный обмен в нервной ткани
- Обмен липидов в нервной ткани имеет следующие особенности
- Роль медиаторов в передаче нервных импульсов
- Нейрохимические основы памяти
- Спинномозговая жидкость (ликвор или цереброспинальная жидкость)
- Глава 33 биохимия мышечной ткани
- Белки мышечной ткани
- Биохимические механизмы сокращения и расслабления мышц
- Роль ионов кальция в регуляции мышечного сокращения
- Деполяризация т-трубочек
- Глава 34 Биохимия соединительной ткани.
- Эластин
- Протеогликаны и гликопротеины