11.5.1. Общее представление о галактиках и их изучении
Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, так и названные туманностями, видимые в разных созвездиях неизменно в одних и тех же местах. С помощью сильных телескопов В. Гершель и его сын Джон открыли множество таких туманных пятен, а к концу прошлого века было обнаружено, что некоторые из них имеют спиральную форму. Но долго оставалось загадкой, что представляют собой эти туманности. Только в 20-е гг. XX в. с помощью крупнейших в то время телескопов удалось разложить туманности на звезды. Стало ясно, что туманности — это не облака пыли, светящиеся отраженным светом, и не облака разреженного газа, а чрезвычайно далекие звездные системы, в которых звезд несравненно больше, чем в близких к Солнцу шаровых скоплениях. Галактики — это гигантские звездные системы (примерно до 1013 звезд). Такого же порядка (n = 13) и массы галактик по отношению к массе Солнца.
Некоторые галактики можно разглядеть в хороший бинокль. Галактику Андромеды, большую по размерам и находящуюся достаточно близко к Солнцу (всего в 1,5 млн световых лет), в состоянии увидеть человек с хорошим зрением: это размытое пятно в созвездии Андромеды. Современные телескопы позволяют отыскать сотни миллионов других галактик. Строение их различно. Но наиболее характерна и примечательна одна форма —уплощенный диск с выпуклостью в центре, откуда исходят спиральные рукава. Галактика Андромеды, как и наша собственная, принадлежит к спиральному типу галактик. Солнечная система расположена в одном из спиральных рукавов Галактики на расстоянии примерно двух третей ее радиуса от центра.
Следует помнить, что, наблюдая Вселенную, мы видим галактики не такими, какие они есть теперь, а такими, какими они были в далеком прошлом. Ведь свет от них приходит к нам через пространство в миллионы и миллионы километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает Земли через 1,5 млн лет. С помощью больших телескопов можно наблюдать еще намного более далекие галактики, и мы видим их такими, какими они были миллиарды лет. назад. Расстояние до самых дальних из наблюдаемых в настоящее время галактик — свыше 10 млрд световых лет.
Изучение мира галактик является сейчас наиболее бурно развивающейся областью астрономии. Именно в этой области происходят наиболее поразительные открытия, которые подводят нас к раскрытию глубинных тайн Вселенной, загадок, наиболее потрясающих воображение. Изучение галактик требует максимально мощных инструментов, в частности, оптических телескопов с зеркалом диаметром более метра, а также новейших средств и методов исследования слабых объектов (в частности, радиоастрономии).
Велики не только размеры галактик и расстояния до них, велико и количество галактик, которые наблюдаются астрономами. Так, самый большой 6-метровый телескоп позволяет сфотографировать миллиарды галактик. В хорошо исследованной области пространства, на расстояниях 1500 Мпк, находится сейчас несколько миллиардов галактик. Таким образом, наблюдаемая нами область Вселенной - это прежде всего мир галактик.
Одна из центральных проблем внегалактической астрономии связана с определением расстояний до галактик и размеров самих галактик. Расстояния до ближайших галактик, которые можно разложить на звезды, определяются по их светимости. Сложнее оценить расстояние до далеких галактик.
В 1912 г. американский астроном В. Слайфер обнаружил эффект красного смещения в спектрах далеких галактик: их спектральные линии оказались смещенными к длинноволновому (красному) краю по сравнению с такими же линиями в спектрах источников, неподвижных относительно наблюдателя. В 1929 г. американский астроном Э. Хаббл, сравнивая расстояния до галактик и их красные смещения, обнаружил, что последние растут в среднем пропорционально расстояниям (закон Хаббла). Этот закон дал астрономам эффективный метод определения расстояний до галактик по следующей формуле:
r=сz/H (Мпк),
где r - расстояние до галактики; с — скорость света; H - постоянная Хаббла.
По современной оценке, постоянная Хаббла (отношение скорости удаления (V) внегалактических источников к расстоянию (R) до них Н = V/R) составляет от 50 до 100 км/(с·Мпк). В настоящее время измерены красные смещения тысяч галактик и квазаров.
Определение расстояний до галактик и их положения на небе позволило сделать еще один вывод. Оказалось, что большинство галактик входит в группировки, которые насчитывают от нескольких галактик (группа галактик) до сотен и тысяч галактик (скопление галактик) и даже облака скоплений (сверхскопления). Наблюдаются и одиночные галактики, но они относительно редки (не более 10%). Другими словами, если галактики — это «острова Вселенной», то они, как правило, объединены в архипелаги. Размеры галактик тоже различны. Есть галактики-карлики в несколько десятков световых лет и галактики-великаны с поперечником до 18 млн световых лет.
Средние расстояния между галактиками в группах и скоплениях примерно в 10—20 раз больше, чем размеры крупнейших галактик. Расстояния между скоплениями галактик составляют десятки мега-парсек. Таким образом, галактики заполняют пространство с большей относительной плотностью, чем звезды во внутригалактическом пространстве (расстояния между звездами в среднем в 20 млн раз больше их диаметра).
Наиболее исследована местная группа галактик, в которой самыми яркими являются наша Галактика и туманность Андромеды. Вокруг них, в свою очередь, располагаются еще целые семейства галактик. Так, в семейство нашей Галактики входят 14 карликовых эллиптических галактик, несколько внегалактических шаровых скоплений и ряд так называемых неправильных галактик, среди которых крупнейшие Магеллановы Облака (Большое и Малое). Недавно открыта новая галактика, которая находится от нас на расстоянии всего 55 тыс. световых лет. Ее назвали Сникерс (усмешка, ухмылка). Несколько меньшее семейство у туманности Андромеды (одна спиральная, две эллиптические и несколько карликовых).
Ближайшие соседние группы галактик располагаются в 2—5 Мпк от Местной группы и по составу похожи на нее. В пределах 10—20 Мпк около нашей Галактики обнаружено несколько десятков групп галактик. Ближайшее крупное скопление галактик находится в созвездии Девы на расстоянии около 20 Мпк. В это скопление входит около 200 галактик средней и высокой светимости. Скопление в созвездии Девы представляет собой, по-видимому, центральное сгущение еще более крупной системы галактик — сверхскопления галактик. (Уже давно замечено, что яркие галактики расположены по небу не беспорядочно, а поясом, который можно назвать Млечным Путем галактик.) Общее число галактик нашего сверхскопления, исключая карликовые, около 20 000, диаметр его около 60 Мпк. Ближайшие соседи нашего Сверхскопления — сверхскопления в созвездии Льва (на расстоянии 140 Мпк) и в созвездии Геркулеса (190 Мпк). В настоящее время выявлено свыше полусотни сверхскоплений галактик.
Чрезвычайно многообразны и формы галактик. Типология форм галактик, разработанная еще Э. Хабблом, в основном сохранилась до настоящего времени, хотя, конечно, за прошедшие десятилетия были обнаружены и новые типы галактик. Хаббл выделял три основных типа галактик:
эллиптические, имеющие круглую или эллиптическую форму (обозначаются Е); это наиболее простые галактики, не содержащие горячих звезд, сверхгигантов, пыли и газовых туманностей; в центре их нет ядра;
спиральные, которые Хаббл разбил на два семейства — обычные (S) и пересеченные (SB). У первых ветви выходят непосредственно из ядра; у вторых ядро пересечено широкой, яркой полосой, называемой перемычкой или баром; спиральные ветви отходят от концов бара;
неправильные галактики (Ir) имеют клочковатое строение и неправильную форму; яркость и светимость их невелики; они изобилуют горячими сверхгигантами, газовыми туманностями и пылью (например, Большое и Малое Магеллановы Облака); к неправильным галактикам относятся также взаимодействующие галактики; большинство неправильных галактик — карлики.
Форма и структура галактик связаны с их основными физическими характеристиками: размером, массой, светимостью. И по этим характеристикам мир галактик оказался поразительно разнообразным.
В центрах галактик обычно сосредоточено огромное количество; вещества (до 10% всей ее массы). Здесь происходят выбросы большого количества вещества, что приводит к интенсивному движению от центра туч водорода. В отдельных галактиках ядро, по-видимому, может представлять собой черную дыру.
По нашим человеческим меркам галактики невообразимо огромны, но в космологических масштабах они ничтожно малы. Галактики разбросаны по Вселенной более или менее беспорядочно, однако они обычно собраны в небольшие группы. Подобные группы галактик — «атомы» космологии. Космология рассматривает поведение Вселенной лишь в масштабах такого или более высокого порядков. Процессы, происходящие в отдельных галактиках (хотя они могут быть очень важными) редко становятся существенными для космологии.
- В.М.Найдыш Концепции современного естествознания
- Предисловие
- Введение Естествознание как отрасль научного познания
- B.I. Понятие культуры
- В.2. Материальная и духовная культура
- В.З. Наука как компонент духовной культуры
- В.4. Проблема культур в науке: от конфронтации к сотрудничеству
- В.5. Структура естественно-научного познания
- Часть первая Основные исторические периоды развития естествознания
- 1. Накопление рациональных знаний в системе первобытного сознания
- 1.1. Повседневное, стихийно-эмпирическое знание
- 1.2. Зарождение счета
- 1.3. Мифология
- 2. Наука в цивилизациях древности
- 2.1. Становление цивилизации
- 2.1.1. Неолитическая революция
- 2.1.2. Рационализация форм деятельности и общения
- 2.1.3. Разделение труда и развитие духовной культуры
- 2.1.4. Возникновение письменности
- 2.1.5. «Культурное пространство» древневосточных цивилизаций
- 2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока
- 2.2.1. От Мифа к Логосу (Науке)
- 2.2.2. Географические знания.
- 2.2.3. Биологические, медицинские и химические знания
- 2.2.4. Астрономические знания
- 2.2.5. Математические знания
- 3. Создание первой естественно-научной картины мира в древнегреческой культуре
- 3.1. Культурно-исторические особенности древнегреческой цивилизации
- 3.2. От Хаоса к Космосу
- 3.3. Категория субстанции
- 3.4. Мир как число
- 3.4.1. Пифагорейский союз
- 3.4.2. Математические и естественно-научные достижения пифагореизма
- 3.5. Формирование первых естественно-научных программ
- 3.5.1. Великое открытие элеатов
- 3.5.2. Атомистическая программа
- 3.5.3. Математическая программа
- 3.6. Физика и космология Аристотеля
- 3.6.1. Учение Аристотеля о материи и форме
- 3.6.2. Космология Аристотеля
- 3.6.3. Основные представления аристотелевской механики
- 3.7. Естествознание эллинистически-римского периода
- 3.7.1. Культура эллинизма
- 3.7.2. Александрийская математическая школа
- 3.7.3. Развитие теоретической и прикладной механики
- 3.8. Развитие древнегреческой астрономии
- 3. 8.1. Становление математической астрономии
- 3.8.2. Геоцентрическая система Птолемея
- 3.9. Античные воззрения на органический мир
- 3. 9.1. Античные толкования проблемы происхождения и развития живого
- 3.9. 2. Биологические воззрения Аристотеля
- 3. 9.3. Накопление рациональных биологических знаний в античности
- 3.9.4. Античные представления о происхождении человека
- 3.10. Упадок античной науки
- 4. Естествознание в эпоху средневековья
- 4.1. Особенности средневековой духовной культуры
- 4.1.1. Доминирование ценностного над познавательным
- 4. 1.2. Отношение к познанию природы
- 4.1.3. Особенности познавательной деятельности
- 4.2. Естественно-научные достижения средневековой арабской культуры
- 4.2.1. Математические достижения
- 4.2.2. Физика и астрономия
- 4.3. Становление науки в средневековой Европе
- 4.4. Физические идеи средневековья
- 4.5. Алхимия как феномен средневековой культуры
- 4.6. Религиозная трактовка происхождения человека
- 4.7. Историческое значение средневекового познания
- 5. Познание природы в эпоху возрождения
- 5.1. Ренессанская мировоззренческая революция
- 5.2. Зарождение научной биологии
- 5.3. Коперниканская революция
- 5.3.1. Гелиоцентрическая система мира
- 5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма
- 6. Научная революция XVII в.: возникновение классической механики
- 6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- 6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории
- 6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»
- 6.2.2. Картезианская физика
- 6.2.3. Новые идеи в динамике Солнечной системы
- 6.3. Ньютонианская революция
- 6.3.1. Создание теории тяготения
- 6.3.2. Корпускулярная теория света
- 6.3.3. Космология Ньютона
- 6.4. Изучение магнитных и электрических явлений вXviIв.
- 7. Естествознание XVIII -первой половины XIX в.
- 7.1. Общая характеристика развития физики
- 7.1.1. Становление основных отраслей классической физики
- 7.1.2. Принцип дальнодействия
- 7.1.3. Теория теплорода
- 7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.
- 7.1.5. Физика первой половины XIX в.: общая характеристика
- 7.1.6. Волновая теория света
- 7.1.7. Проблема эфира
- 7.1.8. Возникновение полевой концепции
- 7.1.9. Закон сохранения и превращения энергии
- 7.1.10. Концепции пространства и времени
- 7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)
- 7.2. Развитие астрономической картины мира
- 7.2.1. Создание внегалактической астрономии
- 7.2.2. Формирование идеи развития природы
- 7.2.3. Идея развития в астрономии
- 7.2.4. Космогония и. Канта
- 7.2.5. Методологические установки классической астрономии
- 7.3. Возникновение и развитие научной химии
- 7.3.1. От алхимии к научной химии
- 7. 3.2. Лавуазье: революция в химии
- 7.3.3. Победа атомно-молекулярного учения
- 7.4. Биология
- 7.4.1. Образы, идеи, принципы и понятия биологии XVIII в.
- 7.4.2. От концепций трансформации видов к идее эволюции
- 7.4.3. Ламаркизм
- 7.4.4. Катастрофизм
- 7.4.5. Униформизм. Актуалистический метод
- 7.4.6. Дарвиновская революция
- 7.4.7. Методологические установки классической биологии
- 8. Естествознание второй половины XIX в.: на пути к новой научной революции
- 8.1. Физика
- 8.1.1. Основные черты
- 8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем
- 8.1.3. Развитие представлений о пространстве и времени
- 8.1.4. Теория электромагнитного поля
- 8.1.5. Великие открытия
- 8.1.6. Кризис в физике на рубеже веков
- 8.2. Астрономия
- 8.2.1. Триумф ньютоновской астрономии и... Первая брешь в ней
- 8.2.2. Формирование астрофизики: проблема внутреннего строения звезд
- 8.3. Биология
- 8. 3.1. Утверждение теории эволюции ч. Дарвина
- 8.3.2. Становление учения о наследственности (генетики)
- Часть вторая
- 9.1.2. Создание а. Эйнштейном специальной теории относительности
- 9.2. Создание и развитие общей теории относительности
- 9.2.1. Принципы и понятия эйнштейновской теории гравитации
- 9.2.2. Экспериментальная проверка общей теории относительности
- 9.2 3. Современное состояние теории гравитациии ее роль в физике
- 9.3. Возникновение и развитие квантовой физики
- 9.3.1. Гипотеза квантов
- 9.3.2. Теория атома и. Бора. Принцип соответствия
- 9.3.3. Создание нерелятивистской квантовой механики
- 9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности
- 9.4. Методологические установки неклассической физики
- 10. Мир элементарных частиц
- 10.1. Фундаментальные физические взаимодействия
- 10.1.1. Гравитация
- 10.1.2. Электромагнетизм
- 10.1.3. Слабое взаимодействие
- 10.1.4. Сильное взаимодействие
- 10.1.5. Проблема единства физики
- 10.2. Классификация элементарных частиц
- 10.2.1. Характеристики субатомных частиц
- 10.2.2. Лептоны
- L0.2.3. Адроны
- 10.2.4. Частицы - переносчики взаимодействий
- 10.3. Теории элементарных частиц
- 10.3.1. Квантовая электродинамика
- 10.3.2. Теория кварков
- 10.3.3. Теория электрослабого взаимодействия
- 10.3.4. Квантовая хромодинамика
- 10.3.5. На пути к Великому объединению
- Современная астрономическая картина мира
- 11. Особенности астрономии XX в.
- 11.1. Изменения способа познания в астрономии хх в.
- 11.2. Новая астрономическая революция
- 11.3. Солнечная система
- 11.3.1. Планеты и их спутники
- 11.3.2. Строение планет
- 11.3.3. Происхождение планет
- 11.3.4. Химический состав вещества во Вселенной
- 11.4. Звезды
- 11.4.1. Звезда - газовый шар
- 11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»
- 11.5. Острова Вселенной: галактики
- 11.5.1. Общее представление о галактиках и их изучении
- 11.5.2. Наша Галактика - звездный дом человечества
- 11.5.3. Межзвездная среда
- 11.5.4. Понятие Метагалактики
- 11.6. Вселенная в целом
- 11.6.1. Особенности современной космологии
- 11.7. Эволюция Вселенной
- 11.7.1. Модель горячей Вселенной
- 11.7.2. Большой Взрыв: инфляционная модель
- 11.7.3. Первые секунды Вселенной
- 11.7.4. От первых минут Вселенной до образования звезд и галактик
- 11.7.5. Образование тяжелых химических элементов
- 11.7.6. Сценарии будущего Вселенной
- 11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- 11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности
- 11.8.2. Типы контактов с внеземными цивилизациями
- 11.8.3. Поиски внеземных цивилизаций
- 11.9. Методологические остановки «неклассической» астрономии XX в.
- Современная биологическая картина мира
- 12. Особенности биологии XX в.
- 12.1. Век генетики
- 12.1.1. Хромосомная теория наследственности
- 12.1.2. Создание синтетической теории эволюции
- 12.1.3. Революция в молекулярной, биологии
- 12.1.4. Методологические установки современной биологии
- 13. Мир живого
- 13.1. Особенности живых систем
- 13.1.1. Существенные черты живых систем
- 13.1.2. Основные уровни организации живого
- 13.2. Возникновение жизни на Земле
- 13.2.1. Развитие представлений о происхождении жизни
- 13.2.2. Возникновение жизни
- 13.3. Развитие органического мира
- 13.3.1. Основные этапы геологической истории Земли
- Геологические эры Земли:
- 13.3.2. Начальные этапы эволюции жизни
- 13.3.3. Образование царства растений и царства животных
- 13.3.4. Завоевание суши
- 13.3.5. Основные пути эволюции наземных растений
- 13.3.6. Пути эволюции животных
- 14. Возникновение человека и общества (антропосоциогенез)
- 14.1. Естествознание XVII— первой половины xiXв. О происхождении человека
- 14.2. Предпосылки антропосоциогенеза
- 14.2.1. Абиотические предпосылки
- 14.2.2. Биологические предпосылки
- 14.3. Возникновение труда
- 14.3.1. «Человек умелый»
- 14.3.2. Развитие древнейшей техники человека
- 14.4. Становление социальных отношений
- 14.4.1. Биологические предпосылки социальных отношений
- 14.4.2. Возникновение разделения труда
- 14.5. Генезис сознания и языка.
- 14.5.1. Раскрытие тайны происхождения сознания
- 14.5.2. Генезис языка
- Часть третья естествознание на порогеXxIв.
- 15. Теория самоорганизации (синергетика)
- 15.1. От моделирования простых систем к моделированию сложных
- 15.2. Характеристики самоорганизующихся систем
- 15.2.1. Открытость
- 15.2.2. Нелинейность
- 15.2.3. Диссипативность
- 15.3. Закономерности самоорганизации
- 16. Глобальный эволюционизм
- 17. На пути к постнеклассической науке XXI в.
- Заключение Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- Наука и квазинаучные формы духовной культуры
- Контрольные вопросы
- Литература
- Терминологический словарь
- Именной указатель
- Основные сокращения и обозначения
- Соотношения между некоторыми физическими величинами
- Содержание
- 1. Накопление рациональных знаний в системе первобытного сознания 12
- 2. Наука в цивилизациях древности 20
- 3. Создание первой естественно-научной картины мира в древнегреческой культуре 39
- 4. Естествознание в эпоху средневековья 64
- 5. Познание природы в эпоху возрождения 75
- 6. Научная революция XVII в.: возникновение классической механики 83
- 7. Естествознание XVIII -первой половины XIX в. 93
- 8. Естествознание второй половины XIX в.: на пути к новой научной революции 122
- 9. Научная революция в физике начала XX в.: возникновение релятивистской и квантовой физики 135
- 10. Мир элементарных частиц 149
- 11. Особенности астрономии XX в. 163
- 12. Особенности биологии XX в. 191
- 13. Мир живого 194
- 14. Возникновение человека и общества (антропосоциогенез) 210
- 15. Теория самоорганизации (синергетика) 224
- 16. Глобальный эволюционизм 228
- 17. На пути к постнеклассической науке XXI в. 229