logo
Грушевицкая Садохин КСЕ Учебник

Динамические законы и теории и механический, детерминизм

Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупность динамических законов. Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона. Она претендовала на описание механического движения, то есть перемещения в пространстве с течением времени любых тел или частей тел относительно друг друга с какой угодно точностью.

Непосредственно законы механики, сформулированные Ньютоном, относятся к физическому телу, размерами которого можно пренебречь, материальной точке. Но любое тело макроскопических размеров всегда можно рассматривать как совокупность материальных точек и, следовательно, достаточно точно описать его движения.

Поэтому в современной физике под классической механикой понимают механику материальной точки или системы материальных точек и механику абсолютно твердого тела.

Для расчета движения должна быть известна зависимость взаимодействия между частицами от их координат и от скоростей. Тогда по заданным значениям координат и импульсов всех частиц системы в начальный момент времени второй закон Ньютона позволяет однозначно определить координаты и импульсы в любой последующий момент времени. Это позволяет утверждать, что координаты и импульсы частиц системы полностью определяют ее состояние в механике. Любая механическая величина, представляющая для нас интерес (энергия, момент импульса и т.д.), выражается через координаты и импульс. Таким образом, определяются все три элемента фундаментальной теории, какой является классическая механика.

Другим примером фундаментальной физической теории динамического характера может служить электродинамика Максвелла. Здесь объектом исследования является электромагнитное поле. Тогда уравнения Максвелла представляют собой уравнения движения для электромагнитной формы материи. При этом структура электродинамики в самых общих чертах повторяет структуру механики Ньютона. Уравнения Максвелла позволяют по заданным начальным значениям электрического и магнитного полей внутри некоторого объема однозначно определить электромагнитное поле в любой последующий момент времени.

Другие фундаментальные теории динамического характера имеют ту же структуру, что и механика Ньютона, и электродинамика Максвелла. К их числу относятся: механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).

Метафизическая философия считала, что все объективные физические закономерности (и не только физические) имеют точно такой же характер, что и динамические законы. Иначе говоря, не признавались никакие другие виды объективных закономерностей, кроме динамических закономерностей, выражающих однозначные связи физических объектов и описывающих их абсолютно точно посредством определенных физических величин. Отсутствие такого полного описания трактовалось как недостаток наших познавательных способностей.

Абсолютизация динамических закономерностей и, следовательно, механического детерминизма, обычно связывается с П.Лапласом, которому принадлежит уже цитированное нами знаменитое высказывание о том, что если бы нашелся достаточно обширный ум, которому были бы известны для любого данного момента все силы, действующие на все тела Вселенной (от самых больших ее тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным, и ему было бы открыто как прошлое, так и будущее Вселенной.

Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному, как объективной категории, нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким или лапласовским детерминизмом.

Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны и что более глубокими законами природы являются не динамические, а статистические законы, открытые во второй половине XIX века, особенно после того, как выяснился статистический характер законов микромира.

Но даже и при описании движения отдельных макроскопических тел осуществление идеального классического детерминизма практически невозможно. Это хорошо видно из описания постоянно меняющихся систем. Вообще начальные параметры любых механических систем невозможно фиксировать с абсолютной точностью, поэтому точность предсказания физических величин со временем уменьшается. Для каждой механической системы существует некоторое критическое время, начиная с которого невозможно точно предсказать ее поведение.

Несомненно, что лапласовский детерминизм с определенной степенью идеализации отражает реальное движение тел и в этом отношении его нельзя считать ложным. Но абсолютизация его как совершенно точного отображения действительности недопустима.

С утверждением главенствующего значения статистических закономерностей в физике исчезает идея всеведущего сознания, для которого абсолютно точно и однозначно детерминированы судьбы мира, тот идеал, который был поставлен перед наукой концепцией абсолютного детерминизма.