Основы синергетики
Синергетика (это понятие означает кооперативность, сотрудничество, взаимодействие различных элементов системы) -по определению ее создателя Г. Хакена - занимается изучением систем, состоящих из многих подсистем самой различной природы, таких как электроны, атомы, молекулы, клетки, нейтроны, механические элементы, фотоны, органы животных и даже люди... Это наука о самоорганизации простых систем, о превращении хаоса в порядок.
В синергетике возникновение упорядоченных сложных систем обусловлено рождением коллективных типов поведения под воздействием флуктуаций, их конкуренцией и отбором того типа поведения, который оказывается способным выжить в условиях конкуренции. Как замечает сам Хакен, это приводит нас в определенном смысле к своего рода обобщенному дарвинизму, действие которого распространяется не только на органический, но и на неорганический мир.
Объект изучения синергетики, независимо от его природы, обязан удовлетворять следующим требованиям:
1) открытость - обязательный обмен энергией и (или) веществом с окружающей средой;
2) существенная неравновесность - достигается при определенных состояниях и при определенных значениях параметров, характеризующих систему, которые переводят ее в критическое состояние, сопровождаемое потерей устойчивости;
3) выход из критического состояния скачком, в процессе типа фазового перехода, в качественно новое состояние с более высоким уровнем упорядоченности.
Скачок - это крайне нелинейный процесс, при котором малые изменения параметров системы (обычно они называются управляющими параметрами) вызывают очень сильные изменения состояния системы, ее переход в новое качество. Например, при снижении температуры воды до определенного значения она скачком превращается в лед. Около критической точки перехода достаточно изменить температуру воды (управляющий параметр) на доли градуса, чтобы вызвать ее практически мгновенное превращение в твердое тело.
Первоначально сферой приложения синергетики была квантовая электроника и радиофизика. Примером самоорганизации может служить система, изучаемая в разделах квантовой электроники,- лазер. Этот прибор создает высокоорганизованное оптическое излучение. Традиционные источники света - лампы накаливания, газоразрядные лампы - создают оптические излучения за счет процессов, подчиняющихся статистическим законам. Так, в нагретой до высокой температуры среде возбужденные атомы и ионы спонтанно излучают кванты света с различными длинами волн во всех направлениях. Только малую часть из них мы воспринимаем как видимый свет. Уровень организации подобной среды крайне низок, упорядоченность мала. Для лазерной активной среды, которая должна в принципе находиться в сильно неравновесном состоянии, характерна высокая упорядоченность атомных, ионных или молекулярных избирательно возбуждаемых состояний, что достигается направленным введением в среду организованного потока энергии (накачка). При выполнении определенного условия в среде лавинообразно нарастает вынужденное излучение почти монохроматических квантов света, движущихся в одном направлении. Лазерная генерация возникает скачком после того, как плотность вводимой в среду энергии накачки превысит пороговое значение, зависящее от свойств активной среды, характера накачки и параметров оптического резонатора, в который помещают активную среду для усиления эффекта. Излучение выходит в виде узконаправленного луча.
Подобные же процессы есть в химии - смешивание жидкостей разных цветов, когда попеременно получается жидкость то красного, то синего цвета; в биологии - мышечные сокращения, электрические колебания в коре головного мозга, явление морфогенеза (отдельные клетки бывают только недифференцированными, специализация развивается в соответствующем окружении других клеток), динамика популяций (временные колебания численности видов) и т.д.
Самоорганизующиеся системы обретают присущие им структуры или функции без какого бы то ни было вмешательства извне. Обычно эти системы состоят из большого числа подсистем. При изменении определенных условий, которые называются управляющими параметрами, в системе образуются качественно новые структуры. Эти системы обладают способностью переходить из однородного, недифференцированного состояния покоя в неоднородное, но хорошо упорядоченное состояние или в одно из нескольких возможных состояний.
Этими системами можно управлять, изменяя действующие на них внешние факторы. Поток энергии или вещества уводит физическую, химическую, биологическую или социальную систему далеко от состояния термодинамического равновесия. Изменяя температуру, уровень радиации, давление и т.д., мы можем управлять системами извне.
Самоорганизующиеся системы способны сохранять внутреннюю устойчивость при воздействии внешней среды, они находят способы самосохранения, чтобы не разрушаться и даже улучшать свою структуру.
- Т.Г.Грушевицкая, а.П.Садохин
- Тема 1. Наука и ее роль в жизни общества
- Тема 1 наука и ее роль в жизни общества проблема определения науки
- Соотношение науки, философии и религии
- Структура науки и ее функции
- Критерии научности знания
- Тема 2 научная теория. Структура и основания теории
- Теория как форма научного знания. Теория и научные программы
- Структура научной теории
- Гносеологические предпосылки науки
- Классификация научных теорий
- Научные понятия и способ их образования
- Введение и исключение научных абстракций
- Тема 3 методы научного познания. Развитие научного знания
- Методы научного познания
- Законы науки
- Развитие научного знания
- Специфика научных революций
- Тема 4 возникновение науки. Появление первых научных программ проблема начала науки
- Научные знания на древнем востоке
- Начало науки. Античная наука
- Первые научные программы античности
- Тема 5 формирование основ естествознания в эпоху средневековья и возрождения
- Основные черты средневекового мировоззрения
- Наука и научное познание в средние века
- Революция в мировоззрении в эпоху возрождения
- Тема 6 научная революция XVI-xvh вв. И становление классической науки
- Галилей и его роль в возникновении современной науки
- Основные аспекты научной революции
- Исаак ньютон и завершение научной революции
- Тема 7 специфика и природа современной науки
- Особенности классической науки
- Наука XIX века
- Новейшая революция в науке
- Основные черты современной науки
- Кризис современной науки. Постнеклассическая наука
- Тема 8 физическая картина мира
- Механическая картина мира
- Электромагнитная картина мира
- Становление современной физической картины мира
- Тема 9 структурные уровни организации материи структурность и системность материи
- Поле и вещество
- Классификация элементарных частиц
- Тема 10 физическое взаимодействие проблемы учения о взаимодействии и движении
- Общая характеристика физических взаимодействий
- Гравитационное взаимодействие
- Электромагнитное взаимодействие
- Слабое взаимодействие
- Сильное взаимодействие
- Теории большого объединения и суперобъединения
- Тема 11 концепции пространства и времени в современном естествознании
- Развитие представлений о пространстве и времени
- Теория относительности
- Единство и многообразие свойств пространства и времени
- Тема 12 детерминизм и причинность в современной физике. Динамические и статистические законы
- Динамические законы и теории и механический, детерминизм
- Статистические законы и теории и вероятностный детерминизм
- Соотношение динамических и статистических законов
- Тема 13 принципы современной физики
- Принцип симметрии и законы сохранения
- Принцип соответствия
- Принцип дополнительности и соотношение неопределенностей
- Принцип суперпозиции
- Основы термодинамики
- Тема 14 космологические модели вселенной что такое космология?
- Начало научной космологии
- Космологические парадоксы
- Неевклидовы геометрии
- Модель расширяющейся вселенной
- Некоторые трудности гипотезы расширяющейся вселенной
- Тема 15 эволюция вселенной рождение вселенной
- Ранний этап эволюции вселенной
- Структурная самоорганизация вселенной
- Образование солнечной системы
- Тема 16 проблемы самоорганизации материи формирование идеи самоорганизации
- Понятие самоорганизации
- Основы синергетики
- Неравновесная термодинамика и. Пригожина
- Тема 17 становление и развитие химической картины мира возникновение химии
- Алхимия
- Арабская алхимия
- Западноевропейская алхимия
- Период зарождения научной химии
- Теория флогистона
- Закон сохранения массы лавуазье
- Открытие основных законов химии
- Химия как наука
- Тема 18 современные концепции химии структура химии
- Взаимосвязь химии с физикой
- Проблема химического элемента
- Концепции структуры химических соединений
- Учение о химических процессах
- Эволюционная химия
- Взаимосвязь химии с биологией
- Тема 19 происхождение и сущность жизни история проблемы
- Концепция происхождения жизни а.И. Опарина
- Современные концепции происхождения и сущности жизни
- Сущность и определение жизни
- Появление жизни на земле
- Формирование биосферы земли
- Тема 20 эволюция органического мира
- Становление идеи развития в биологии
- Концепция развития ж.-б.Ламарка
- Теория катастроф ж. Кювье
- Эволюционная теория ч.Дарвина
- Антидарвинизм конца XIX-начала XX века
- Тема 21 современные теории эволюции
- Основы генетики
- Синтетическая теория эволюции (стэ)
- Тема 22 человек как предмет естествознания
- Происхождение человека
- Сущность человека
- Телесность и здоровье человека
- Тема 23 человек, биосфера и космос
- Человек и космос
- Космизация современной науки и философии
- Антропный принцип
- Тема 24 на пути к ноосфере
- Современные концепции экологии
- Концепция ноосферы и устойчивого развития