Обратная транскрипция
Определение: обратная транскрипция - это синтез ДНК по матрице РНК.
Обратную транскрипцию обнаружили в 1970 г. Темин, Балтимор, Дульбеко, работавшие с вирусом саркомы Рауса (ВСР). Этот вирус вызывает саркому у кур. Это онкорнавирус (oncoRNA) - относится к ретровирусам.
Определение: ретровирусы - это РНК-содержащие вирусы, в жизненный цикл которых входит стадия образования ДНК обратной транскриптазой и внедрение ее в геном клетки хозяина в форме провируса.
Предпочтительного места внедрения провируса в геном нет. Это позволяет отнести его к мобильным генетическим элементам.
В состав ретровируса входит две идентичные молекулы РНК. На 5'-конце имеется Сap, на 3'-конце - поли А-хвост. Фермент обратную транскриптазу вирус "носит" c собой.
Геном ретровируса содержит 4 гена: |
|
gag - белок нуклеоида,
pol - обратная транскриптаза,
env - белок капсида (оболочки),
onc - онкоген, ответственный за злокачественную трансформацию клетки.
str5 = str3 - (short terminal repeat) короткий концевой повтор;
U5, U3 - уникальные последовательности (U5 - 80 н., U3 - 200 н.);
PB (primer binding site) - участок связывания затравки.
| На РВ садится (за счет комплементарности) tРНК и служит затравкой для синтеза ДНК. Синтезируется небольшой кусок ДНК. |
Обратная транскриптаза, обладая еще и активностью РНК-азы Н, удаляет РНК в гибриде с ДНК, а за счет идентичности str3 и str5 этот одноцепочечный участок ДНК взаимодействует с 3'-концом второй молекулы РНК, которая служит матрицей для продолжения синтеза цепи ДНК.
Затем РНК-матрица уничтожается и по образовавшейся цепи ДНК строится комплементарная.
Образованная молекула ДНК длиннее РНК. Она содержит LTR (U3 str 3(5) U5). В форме провируса она находится в геноме клетки хозяина. При митозе и мейозе передается дочерним клеткам и потомкам.
Для экспрессии вирусных генов нужен толчок: канцерогены, изменения метаболизма в клетке хозяина, стресс.
Большинство изученных вирусных онкогенов кодируют протеинкиназу, фермент, который фосфорилирует белки. Как правило - это тирозиновая протеинкиназа. В клетке есть собственные протеинкиназы, в том числе и тирозиновая, но гораздо более активны сериновая и треониновая. Гены, кодирующие клеточные протеинкиназы, обозначают oncc, вирусные - oncv. Oncc - клеточные гены, работающие в дифференцированных клетках. Oncc имеют интроны, oncv - не имеют. Oncv либо добавляет тирозиновую протеинкиназу - и сказывается дозовый эффект гена тирозиновой протеинкиназы, либо, по сравнению с клеткой, не имеющей oncv, клетка, его имеющая, фосфорилирует тирозин, а не серин или треонин, как обычно, то есть происходит смена мишени.
В первую очередь это касается белков, присутствующих в клетке в большом количестве. Это белки цитоскелета (нарушение адгезии), мембранные белки (нарушение контактного торможения), гистоны (нарушение регуляции, компактизации, облегчение репликации ДНК).
Ретровирусы скорее всего возникли в результате внедрения мобильных элементов в непосредственной близости от oncc генов. В дальнейшем oncc превратился в oncv, а клеточная полимераза - в обратную транскриптазу. Вирус начал самостоятельную жизнь. Стадия провируса говорит о его клеточном происхождении.
В медицине рак - это злокачественная опухоль только эпителиальных тканей.
Метастазы - возникающие опухоли в районе удаления от исходной опухоли.
Рак - болезнь генома.
Одним из путей активации oncc является такая перестройка генома, в результате которой рядом с онкогеном появляется новый регуляторный элемент, обеспечивающий его более активную транскрипцию.
Другой путь - структурная мутация в протоонкогене, т.е. нормальном клеточном гене, способном превратиться в онкоген.
Существуют антионкогены, или гены-супрессоры опухолей, подавление активности которых приводит к развитию опухолей.
Природа белковых продуктов онкогенов и антионкогенов чрезвычайно разнообразна. К онкогенам относят некоторые гены белков - факторов роста, а также гены рецепторов факторов роста. Перепроизводство факторов роста или нарушение структуры их рецепторов может привести к более частому делению клеток. Изменения в генах, кодирующих белки - передатчики сигналов от рецепторов к ядру клетки, в основном, протеинкиназы различной специфичности, а также изменения экспрессии генов, ответственных за белковые факторы транскрипции, могут превратить нормальную клетку в раковую.
Подавление активности генов, ответственных за рост и размножение клеток, осуществляется белковыми продуктами генов - супрессоров опухолей. Так, ключевая роль в разрешении на переход из одной фазы клеточного цикла в другую принадлежит белкам - циклинам. Только находясь в комплексе с циклинами, циклинзависимые протеинкиназы способны фосфорилировать белки мишени, необходимые для перехода в следующую фазу клеточного цикла.
Специальные белки сканируют ДНК перед репликацией на предмет выявления нерепарированных повреждений. Если ДНК не проходит тест, то включаются системы реализации "запрограммированной смерти" - апоптоза, в результате чего разрушаются жизненно важные структуры клетки, в том числе хромосомы и цитоскелет. Апоптоз определяется большим числом генов, центральное место среди которых занимает ген, кодирующий белок с молекулярным весом 53 кДа, - ген p53. Этот ген поврежден в 50% всех опухолей человека. Когда он выведен из строя, клетки с поврежденной (мутантной) ДНК перестают выбраковываться и в них происходит накопление новых мутаций, которые могут затрагивать как протоонкогены, так и гены-супрессоры опухолей.
Как правило, рак развивается у людей пожилого и старого возраста. Это связано с тем, что мутации возникают случайно - и вероятность накопления в клетке нужного для злокачественного превращения набора измененных генов увеличивается с годами. Посчитано, что в среднем в клетке человека должно накопиться 10 независимых мутаций, касающихся онкогенов и генов - супрессоров опухолей.
- Определение предмета молекулярная биология
- Основные этапы развития молекулярной биологии
- Основные открытия
- Доказательства генетической роли нуклеиновых кислот
- 1. 1928Г. Опыты Фредерика Гриффита.
- 2. 1952Г. Эксперимент Альфреда Херши и Марты Чейз.
- 3. 1957Г. Опыты Френкеля - Конрата
- Принципы строения днк
- Формы двойной спирали днк
- Отличия между днк и рнк
- Виды рнк
- Функции днк
- 1. Днк является носителем генетической информации. Функция обеспечивается фактом существования генетического кода.
- 2. Воспроизведение и передача генетической информации в поколениях клеток и организмов. Функция обеспечивается процессом репликации.
- 3. Реализация генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов. Функция обеспечивается процессами транскрипции и трансляции.
- Аминокислоты
- Классификация аминокислот, входящих в состав белков, по принципу полярности (неполярности) радикала
- Первичная структура белка
- Третичная структура белка
- Четвертичная структура белка
- Серповидно-клеточная анемия, как пример влияния первичной структуры на третичную и четвертичную.
- Глобулярные и фибриллярные белки.
- 95% Белков имеют гидрофобное ядро.
- 5% Фибриллярные белки.
- Функции белков
- Свойства генетического кода
- 1. Триплетность
- 2. Вырожденность.
- 3. Наличие межгенных знаков препинания.
- 4. Однозначность.
- 5. Компактность, или отсутствие внутригенных знаков препинания.
- 6. Универсальность.
- Принципы транскрипции:
- Субъединичный состав рнк-полимеразы е.Coli
- Особенности структуры промотора
- Этапы транскрипции
- 1. Узнавание и прочное связывание
- 2. Инициация заключается в образовании первой фосфодиэфирной связи между пурин-трифосфатом (атф или гтф) и следующим нуклеотидом. После инициации - фактор покидает фермент.
- 3. Элонгация - последовательное наращивание цепи рнк (или продолжение транскрипции).
- 4. Терминация.
- Позитивный контроль работы lac-оперона
- Структура транспортной рнк
- Рекогниция
- 1. Активирование аминокислоты.
- 2. Присоединение аминокислоты к tРнк - аминоацилирование.
- Структура рибосом
- Каталитические центры рибосом
- Синтез полипептидов на рибосоме
- Регуляция образования рибосомных рнк и белков рибосом e.Сoli
- 73 Гена должны работать координированно, чтобы не было избытка белков или rРнк.
- Транскрипция у эукариот
- Как образуются рибосомы у эукариот
- Особенности транскрипции эукариот
- 1. Кепирование 100% mРнк
- 4.Редактирование Показано лишь для нескольких mРнк.
- Кепирование
- Назначение "Сар"
- 1. Защита 5'-конца mРнк от действия экзонуклеаз.
- 2. За счет узнавания "Сар"-связывающими белками происходит правильная установка mРнк на рибосоме. Полиаденилирование
- Сплайсинг
- Альтернативный сплайсинг mРнк кальцитонинового гена у млекопитающих (крыса)
- Автосплайсинг
- Малые рнк
- Репликация днк
- Принципы репликации
- Доказательство полуконсервативного характера репликации
- Понятие о матрице и затравке
- 1960Г. Гипотетическая модель.
- Сравнительные характеристики днк-полимераз e. Сoli
- 1974 Г. Оказаки.
- Топологические проблемы репликации днк
- Геликазы
- Топоизомеразы
- Проблема репликации концов линейных молекул
- Причины ошибок при синтезе днк
- In vitro происходит 1 ошибка на 100 тыс. Нукл. Для средней днк-полимеразы.
- In vitro можно уменьшить вероятность ошибки до 1 на 1млн. Нукл., если добавить ssb, геликазу и лигазу.
- Этапы проверки
- Вероятность ошибок для ферментов вирусов, про- и эукариот
- Основные репарабельные повреждения в днк и принципы их устранения
- 1. Апуринизация.
- 2. Дезаминирование.
- 3. Тиминовые димеры.
- Размер генома
- "Избыточность" эукариотического генома
- 1. Большой размер генов (за счет наличия интронов).
- 2. Присутствие повторенных последовательностей. Повторяются и гены, и некодирующие участки. У эукариот некоторые последовательности повторены сотни и тысячи раз.
- Общая характеристика гистонов
- Четыре уровня компактизации днк
- 1. Нуклеосомный.
- 2. Супербидный, или соленоидный.
- 3. Петлевой уровень.
- 4. Метафазная хромосома.
- Основы метода ренатурации днк
- Быстрые повторы
- 3. Сателлитная днк всегда располагается тандемно по 100-200 единиц в блоке. Образуются длинные последовательности в геноме.
- 4. У недавно образовавшихся на одной территории близких видов сателлитная днк заведомо разная.
- Умеренные повторы
- Уникальные гены
- Другая классификация генов
- Умеренные фаги
- Эффекты, вызываемые мобильными элементами
- Молекулярные основы канцерогенеза
- Теории рака
- Обратная транскрипция
- Гипотезы возникновения жизни
- Теория биопоэза
- 1. Образование биомономеров.
- 2. Образование биополимеров и их эволюция. Образование систем с обратной связью.
- 3. Образование мембранных структур и пробионтов (первых клеток).
- 2 Стадия биопоэза.
- Стадия 3.
- Эволюция пробиотов