3.4. Современные представления об элементарных частицах. Структура микромира
Структурность и
системность
наряду с пространством, временем, движением являются атрибутами, т. е. неотьемле-мыми свойствами, материи. Современное миропонимание предполагает упорядоченность и организованность мира, а проблема самоорганизации бытия является одной из самых важных в науке и философии. Бытие представляет собой сложноорганизованную иерархию систем, все элементы которой находятся в закономерной связи друг с другом, кажущаяся неоформленность изменений в каком-то одном отношении оказывается упорядоченностью в другом. Именно это обстоятельство выражается в понятии системности.
Существует несколько десятков определений понятия «система», однако классическим признано определение, данное основоположником теории систем Л. Берталанфи:
система
– это комплекс взаимодействующих элементов. Ключевым понятием в этом определении является понятие «элемент».
Элемент
понимается как неразложимый компонент системы при определенном, заданном способе ее рассмотрения. Если меняется угол зрения, то явления или события, которые рассматривались в качестве элемента системы, сами могут становиться системами. Например, элементами системы «газ» выступают молекулы газа. Однако сами молекулы в свою очередь могут рассматриваться в качестве систем, элементами которых являются атомы. Атом – тоже система, однако принципиально другого уровня, чем газ и, т. д. Элементами системы признаются только те предметы, явления или процессы, которые участвуют в формировании ее свойств. Комплекс элементов системы может складываться в подсистемы разного уровня, которые выполняют частные программы и представляют собой промежуточные звенья между элементами и системой.
По характеру связей между элементами все системы делятся на суммативные и целостные. В
суммативных системах
связь между элементами выражена слабо, они автономны по отношению друг к другу и системе в целом. Качество такого образования равно сумме качеств составляющих его элементов. Примерами суммативной системы являются груда камней, куча песка и т. п. Несмотря на высокую степень автономности элементов, образования, аналогичные груде камней, все же рассматриваются как системы, поскольку могут сохранять устойчивость длительное время и существовать в качестве самостоятельных совокупностей. Кроме того, существует предел количественных изменений таких систем, превышение которого приводит к изменению их качества. У суммативных систем есть собственная программа существования, которая выражается в структурности (о понятии структурности мы скажем ниже).
В
целостных системах
четко выражена зависимость их возникновения и функционирования от составляющих элементов, и наоборот. Каждый элемент такой системы в своем возникновении, развитии и функционировании зависит от всей целостности, и, в свою очередь, система зависит от каждого из своих элементов. Внутренние связи в целостно-стях стабильнее внешних, а качество системы не сводится к сумме составляющих ее элементов. Примером целостной системы являются живой организм или общество. Под действием определенных факторов суммативные системы могут преобразовываться в целостные, и наоборот.
Помимо типологии систем в зависимости от характера связи между элементами, системы различают по типу их взаимодействия с окружающей средой. В этом случае выделяют открытые и закрытые (замкнутые) системы. В
закрытых системах
не происходит обмена энергией и веществом с внешним миром. Такие системы стремятся к равновесному состоянию, максимальная степень которого – неупорядоченность и хаос.
Открытые системы,
напротив, обмениваются энергией и веществом с внешним миром. В таких системах при определенных условиях из хаоса могут самопроизвольно возникать новые упорядоченные структуры, а система в целом повышает уровень своей структурной организации (7.2).
Структурность
выражается в упорядоченности существования материи и ее конкретных форм и предполагает внутреннюю расчлененность материи.
Структура
определяется как совокупность устойчивых, закономерных связей и отношений между элементами системы, обеспечивающих сохранение ее основных свойств. Современные представления о структурированности Вселенной касаются мега-, макро– и микромира: и Метагалактика, и известный нам макромир, и микрочастица структурированы. Переход от одной области действительности к другой связан с изменением числа факторов, обеспечивающих упорядоченность, и трансформацией самих структур. Единство организованности (упорядоченности) – системности – и внутренней расчлененности – структурности – определяет существование мира как системы систем: систем обьектов, систем свойств или отношений и т. п.
Элементами структуры микромира выступают
микрочастицы.
На данный момент известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.
Масса элементарной частицы
– это масса ее покоя, которая определяется по отношению к массе покоя электрона. Частицы с нулевой массой покоя движутся со скоростью света (фотон). По массе элементарные частицы делятся на тяжелые (барионы), промежуточные (мезоны) и легкие (лептоны).
Заряд элементарной частицы
всегда кратен заряду электрона (-1), который рассматривается в качестве единицы. Существуют, однако, элементарные частицы, которые не имеют заряда, например фотон.
Спин элементарной частицы
– это собственный момент импульса частицы. В зависимости от спина частицы делятся на две группы: с целым спином (0, 1, 2) – бозоны, с полуцелым спином (1/2 и др.) – фермионы.
Время жизни элементарной частицы
определяет ее стабильность или нестабильность. По времени жизни частицы делятся на стабильные, квазистабильные и нестабильные. Большинство элементарных частиц нестабильно. Нестабильные частицы живут несколько микросекунд, стабильные не распадаются длительное время. Нестабильные частицы распадаются в результате сильного и слабого взаимодействия. Стабильными частицами считаются фотон, нейтрино, нейтрон, протон и электрон. При этом нейтрон стабилен только в ядре, в свободном состоянии он также распадается. Сейчас высказываются предположения о возможной нестабильности протона (3.5). Квазистабильные частицы распадаются в результате электромагнитного и слабого взаимодействия, иначе их называют
резонансными.
Резонансные частицы были открыты в начале 60-х гг. XX в. Время жизни резонансов – порядка 10–22 с.
Все многообразие элементарных частиц можно разделить на три группы: частицы, участвующие в сильном взаимодействии, –
адроны,
частицы, не участвующие в сильном взаимодействии, –
лептоны,
и
частицы – переносчики взаимодействий.
К
адронам
относятся
нейтроны, протоны, барионы, мезоны
Адроны участвуют в электромагнитном, сильном и слабом взаимодействии.
К
лептонам
относятся
электроны, нейтрино, мюоны, may-лептоны,
а также
электронные нейтрино, моюнные нейтрино, may-нейтрино.
Заряженные лептоны участвуют в электромагнитном и слабом взаимодействии, нейтральные – только в слабом.
Частицы – переносчики взаимодействий
непосредственно обеспечивают взаимодействия. К ним относятся
фотоны
– переносчики электромагнитного взаимодействия,
глюоны
– переносчики сильного взаимодействия,
бозоны –
переносчики слабого взаимодействия. Высказывается предположение о существовании
гравитонов
– частиц, обеспечивающих гравитационное взаимодействие.
Все перечисленные частицы различаются по заряду, массе, спину, времени жизни и другим физическим характеристикам. Однако внутри одного типа элементарные частицы совершенно идентичны, лишены индивидуальности: все электроны тождественны друг другу, все фотоны тождественны друг другу и т. п.
В 1936 г. П. Дирак предположил, что каждой частице соответствует античастица, отличающаяся от нее только знаком заряда. В 1936 г. б1л открыт позитрон – античастица электрона, в 1955 г. – антипротон, в 1956 г. – антинейтрон. Сейчас уже не вызывает сомнения, что каждая частица имеет своего «двойника» – античастицу, совершенно идентичную по всем физическим характеристикам, кроме заряда. В 70-80-е гг. XX в. в физике появилось множество теорий антивещества и антиматерии. Наиболее сложной формой антивещества, полученной в лабораторных условиях, являются антиядра трития, гелия. Эксперименты по получению антивещества были выполнены на серпуховском ускорителе в 1970–1974 гг. В 1998 г. получены первые атомы антиводорода.
К середине 1960-х гг. число известных адронов превысило сотню. В связи с этим возникла гипотеза, согласно которой наблюдаемые частицы не отражают предельный уровень материи. В 1964 г. была создана теория строения адронов, или
теория кварков.
Ее авторы – физики М. Гелл-Манн и Д. Цвейг. Слово «кварк» позаимствовано М. Гелл-Маном из романа Дж. Джойса «Поминки по Финнегану», герою которого слышались слова о трех кварках. Слово «кварк» не имеет прямого смыслового значения.
Кварки –
это гипотетические материальные обьекты, их экспериментальное наблюдение пока невозможно, однако теоретические положения кварковой гипотезы оказались плодотворными, а теория в целом эвристичной. Кварковая теория позволила систематизировать известные частицы и предсказать существование новых.
Основные положения теории кварков заключаются в следующем. Адроны состоят из более мелких частиц – кварков. Кварки представляют собой истинно элементарные частицы и поэтому бесструктурны. Главная особенность кварков – дробный заряд. Кварки различаются спином, ароматом и цветом. Аромат кварка не имеет никакого отношения к аромату, понимаемому буквально (аромат цветов, духов и т. п.), это его особая физическая характеристика. Для того чтобы учесть все известные адроны, необходимо было предположить существование шести видов кварков, различающихся ароматом: u (up – верхний), d (down – нижний), s (strange – странный), c (charm – очарование), b (beauty – прелесть) и t (top – верхний). Существует устойчивое мнение, что кварков не должно быть больше.
Считается, что каждый кварк имеет один из трех возможных цветов, которые выбраны произвольно: красный, зеленый, синий. Понятно, что цвет кварка не имеет никакого отношения к обычному оптическому цвету в макромире, цвет кварка, как и аромат, – условное название для определенной физической характеристики. Гипотеза о существовании цвета у кварков впервые была высказана в 1965 г. независимо Н. Боголюбовым, Б. Струминским, А. Тавхелидзе и М. Ханом, Й. Намбу. Впоследствии она получила значительное число экспериментальных подтверждений.
Каждому кварку соответствует антикварк с противоположным цветом (антикрасный, антизеленый и антисиний). Кварки соединяются тройками, образуя барионы (нейтрон, протон), или парами, образуя мезоны. Антикварки, соединясь тройками, соответственно, образуют антибарионы. Мезон состоит из кварка и антикварка. Суммарный цвет объединившихся кварков или антикварков, независимо от того, объединены три кварка (барионы), три антикварка (антибарионы) или кварк и антикварк (мезоны), должен быть белым или бесцветным. Белый цвет дает сумма красного, зеленого, синего или красного – антикрасного, синего – антисинего и т. п. Таким образом, можно говорить о цветовой симметрии в микромире.
Кварки объединяются между собой благодаря сильному взаимодействию. Переносчиками сильного взаимодействия выступают глюоны, которые как бы «склеивают» кварки между собой. Глюоны также имеют цвета, но в отличие от кварков их цвета смешанные, например красный – антисиний и т. п., т. е. глюон состоит из цвета и антицвета. Испускание или поглощение глюона меняет цвет кварка, но сохраняет аромат. Известно восемь типов глюонов. Предполагается, что кварки участвуют также в электромагнитных и слабых взаимодействиях. В электромагнитном взаимодействии кварки не меняют свой цвет и аромат. В слабых взаимодействиях – меняют аромат, но сохраняют цвет.
Теория кварков позволяет предложить стройную и гармоничную модель строения атома. Согласно этой модели атом состоит из тяжелого ядра (протоны и нейтроны, связанные глюонными полями) и электронной оболочки. Протон состоит из двух t-кварков и одного d-кварка. Нейтрон состоит из одного t-кварка и двух d-кварков. Сейчас теория кварков продолжает развиваться и уточняться, поэтому ее нельзя считать окончательно сформированной.
- Тема 1. Особенности естественно-научного познания
- 1.1. Понятие науки. Познание и наука
- 1.2. Проблема критериев научности
- 1.3. Структура научного знания
- 1.4. Развитие науки. Понятие научной революции
- 1.5. Методы и формы научного познания
- 1.6. Естественно-научная и гуманитарная культура
- 1.7. Наука и техника
- 1.8. Особенности современной естественно-научной картины мира
- Тема 2. Основные идеи классического естествознания
- 2.1. Возникновение классического естествознания
- 2.2. Астрономия в XVI–XIX вв
- 2.3. Физика в XVI–XIX вв
- 2.4. Химия в XVII–XIX вв
- 2.5. Биология в XVI–XIX вв
- Тема 3. Современные физические представления о мире
- 3.1. Общие принципы неклассической физики
- 3.2. Современные представления о материи, пространстве и времени. Общая и специальная теории относительности
- 3.3. Основные идеи и принципы квантовой физики
- 3.4. Современные представления об элементарных частицах. Структура микромира
- 3.5. Фундаментальные физические взаимодействия
- Тема 4. Современные взгляды на происхождение и устройство вселенной
- 4.1. Общие принципы современной астрономии
- 4.2. Основные космологические гипотезы. Происхождение Вселенной
- 4.3. Устройство Вселенной
- 4.4. Происхождение и устройство Солнечной системы
- 4.5. Будущее Вселенной
- Тема 5. Современные взгляды на происхождение и эволюцию жизни
- 5.1. Общие принципы современной биологии
- 5.2. Современные представления о происхождении жизни
- 5.3. Основные этапы эволюции органического мира
- 5.4. Сущность и основные признаки живых систем
- 5.5. Уровни организации живой природы
- 5.6. Генетика и молекулярная биология
- 5.7. Синтетическая теория эволюции
- 5.8. Экология и учение о биосфере
- Тема 6. Образ человека в современной науке
- 6.1. Человек как предмет естествознания
- 6.2. Возникновение научной антропологии
- 6.3. Основные этапы антропогенеза
- 6.4. Возникновение сознания. Структура сознания
- 6.5. Сознательное и бессознательное
- 6.6. Сознание и язык
- 6.7. Сознание и мозг
- 6.8. Социальное и биологическое в человеке. Индивид, личность, индивидуальность
- Тема 7. Современные междисциплинарные исследования
- 7.1. Кибернетика
- 7.2. Синергетика
- 7.3. Концепция глобального эволюционизма в науке и философии