Тема 8. Современная химия в контексте устойчивого развития общества
Основные понятия:
химия; алхимия; химический элемент; учение о составе вещества; периодический закон Менделеева; структурная химия; химические процессы; эволюционная химия; биокатализ; химическая картина мира; химические основы жизни; витилизм; органоген №1; динамическая биохимия; состав и структура биополимерных молекул; понятие «самоорганизация»; субстратный подход; функциональный подход.
Химией называют науку о химических элементах и их соединениях. Она изучает состав, свойства и химические превращения веществ, явления, которые сопровождают эти превращения, а также рассматривает вопросы использования результатов этих превращений. Существенная особенность этой науки, отмеченная еще Д.И.Менделеевым: химия в значительной мере сама создает свой объект изучения. Поскольку ее исследования направлены на раскрытие закономерностей химических превращений, которые реализованы искусственно, на получение и изучение веществ, большинство из которых в естественной природе не встречается, химия как наука теснейшим образом связана с химическим производством. Ее основная цель – получение веществ и материалов с заданными свойствами. Любое вещество состоит из химических элементов и их соединений. Свойства вещества определяются:
его элементным и молекулярным составом;
структурой его молекул;
термодинамическими и кинетическими условиями, в которых вещество находится в процессе химической реакции;
уровнем химической организации вещества.
История развития химических концепций начинается с древних времен. Демокрит, Эпикур и другие представители древней натурфилософии высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качественное различие. Аристотель и Эмпедокл объясняли все видимое разнообразие тел природы с антиатомистических позиций: они считали, что в телах сочетаются различные элементы-стихии или элементы-свойства: тепло и холод, сухость и влажность. Подобное учение об элементах-свойствах было развито в алхимии. Однако ни идеи Демокрита об атомах, ни представления Эмпедокла об элементах-стихиях не нашли применения ни в металлургии, ни в стеклоделии, ни в гончарном ремесле.
Первый, по-настоящему действенный способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627–1691), который первым дал научное определение понятия «химический элемент». Результаты экспериментальных исследований Р. Бойля показали, что качества и свойства тел зависят от того, из каких материальных элементов они состоят. Возникшее таким образом учение о составе вещества существует и сегодня и продолжает развиваться на качественно новом уровне. Поиск элементов, или начал составляет первый концептуальный уровень химии (концепции химического состава). Учение о составе вещества занимало монопольное положение вплоть до 30–40-х годов ХIХ века. К тому времени мануфактурная стадия производства с ручной техникой и ограниченным ассортиментом сырья сменялась фабричной стадией с машинной техникой и широкой сырьевой базой. В химическом производстве стала преобладать переработка огромных масс веществ растительного и животного происхождения, качественные разнообразия которых потрясающе велики – сотни тысяч химических соединений, а состав крайне однообразен – лишь несколько элементов-органогенов: углерод, водород, кислород, сера, фосфор. Объяснение необычайно широкому разнообразию органических соединений при столь однообразном их элементном составе стали искать не только в их составе, но и в структуре молекул.
О формировании химической картины мира можно говорить с того момента, как Д.И. Менделеев доказал, что химические элементы можно выстроить в систему в зависимости от атомной массы (атомного веса, как именовал его сам Менделеев) элемента и на основании этого предположения разработал периодический закон химических элементов (1969). Более поздние исследования, связанные с обнаружением изотопов («варианты» одного и того же химического элемента с незначительными различиями по массе), показали, что место элемента в периодической системе определяется не просто порядковым номером, а зарядом атомного ядра. Это означает, что не атомная масса, а именно заряд ядра обеспечивает индивидуальность химического элемента. В этой связи можно утверждать, что химический элемент – это совокупность атомов, обладающих одинаковым зарядом ядра. На сегодня известно 116 таких элементов их называют простейшими веществами.
Все известные на сегодня химические элементы в систематизированном виде в соответствии с периодическим законом, открытым Д.И. Менделеевым, расположены в Периодической системе элементов Менделеева. Химические элементы классифицируются на металлы (золото, платина, серебро, железо, медь, алюминий, кальций, ртуть и др.) и неметаллы (сера, фосфор, углерод, азот, хлор, кислород и т.д.). Установлено, что в составе земной коры, морской воды и атмосферы содержится примерно: 49,5% кислорода, 25,3% кремния, 7,5% алюминия, 5,08% железа, 3,39% кальция, 2,63% натрия, 2,4% калия, 1,93% магния, 0,87% водорода, менее 1% остальных.
Из сказанного следует, что простейшие вещества являются основой всей живой и неживой материи, а, следовательно, и всей Вселенной.
Большинство веществ, находящихся в естественных условиях, состоят в соединениях друг с другом, т.е. являются веществами сложными. Незначительное число элементов в природе находится в свободном состоянии (кислород, серебро, сера и некоторые другие). Ряд химических элементов может существовать в разных модификациях. Так, например, элемент кислород образует два видоизменения: кислород и озон; углерод – три: алмаз, графит и карбин и т.д. Явление видоизменения одного и того же элемента, связанного со сложным внутренним строением химических элементов, называется аллотропией, а образующиеся простейшие вещества – аллотропными видоизменениями или модификациями.
В 1860 году выдающимся русским химиком А.М. Бутлеровым (1828–1886) была создана теория химического строения вещества, возник более высокий уровень развития химических знаний – структурная химия, утвердились атомно-молекулярные представления. Второй концептуальный уровень относится к структуре. Структурные различия приводят к значительным качественным изменениям свойств химических соединений даже при одинаковом химическом составе (пример с графитом и алмазом известен каждому школьнику).
Период становления структурной химии иногда называют «триумфальным маршем органического синтеза». В этот период зарождалась технология органических веществ. Были получены всевозможные красители для тканей, препараты для фармации, искусственный шелк и т.п. Интенсивное развитие автомобильной промышленности, авиации, энергетики и приборостроения в первой половине XX века выдвинуло новые требования к производству материалов. Необходимо было получать высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения таких материалов концепций о составе и структуре вещества было недостаточно.
Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывалось изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. Исследование внутренних механизмов и условий протекания химических процессов составляет третий концептуальный уровень химического знания. Такое изучение способствовало организации многотоннажного производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений – на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.
С конца XIX–начала XX века важнейшим направлением химии стала разработка теоретических основ науки (атомно-молекулярное учение), изучение закономерностей химических процессов.
Химические процессы подчиняются всеобщим законам природы – закону сохранения массы вещества и закону сохранения энергии, а также ряду специфических для химии законов, которыми управляются все химические реакции.
- Академия управления при Президенте Республики Беларусь г.И. Касперович
- Учебное пособие
- Содержание
- Тема 6. Основы кибернетики и синергетики. Самоорганизация, порядок и хаос в природе мира 100
- Тема 7. Современная космологическая картина мира и модели Вселенной 119
- Тема 8. Современная химия в контексте устойчивого развития общества 140
- Тема 9. Специфика, структура и проблемное поле современного биологического познания 155
- Раздел III Социальные и прикладные проблемы естествознания 185
- Тема 10. Социальное измерение современного естествознания. Естественнонаучные основы современных технологий 185
- Введение в учебный курс «Основы современного естествознания»
- Раздел I. Естествознание как феномен культуры и комплекс наук о природе Тема 1. Естествознание в системе науки и культуры
- Контрольные вопросы к теме №1
- Тема 2. Исторические этапы познания природы. Особенности современного естествознания
- Контрольные вопросы к теме №2
- Тема 3. Методы и принципы естественнонаучного познания. Системный подход как его важнейшая парадигма
- Математизация и формализация. Язык современного естествознания
- Системный подход как важнейшая парадигма современного естествознания
- Контрольные вопросы к теме №3
- Раздел II. Фундаментальные законы и основы современного естествознания Тема 4. Научные картины мира и научные революции в истории естествознания
- Контрольные вопросы к теме №4
- Тема 5. Основы современной физической картины мира
- Электромагнитная картина мира
- Современная квантово-релятивистская физическая картина мира
- Постулаты специальной и общей теории относительности
- Формирование квантовой физики. Специфика ее понятий и принципов
- Понятие состояния физической системы. Динамические и статистические закономерности в природе
- Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- Понятие симметрии и законы сохранения
- Контрольные вопросы к теме №5
- Тема 6. Основы кибернетики и синергетики. Самоорганизация, порядок и хаос в природе мира
- Кибернетика: концептуально-понятийная характеристика
- Вклад кибернетики в современную научную картину мира
- От хаоса к порядку. Синергетика как наука
- Механизм протекания процессов самоорганизации (по и.Пригожину)
- Синергетические процессы в предбиологических системах (по м.Эйгену)
- Значение синергетики для науки и культуры
- Контрольные вопросы к теме №6
- Тема 7. Современная космологическая картина мира и модели Вселенной
- Проблема существования и поиска жизни во Вселенной
- Контрольные вопросы к теме №7
- Тема 8. Современная химия в контексте устойчивого развития общества
- Атомно-молекулярное учение
- Химические основы жизни
- Перспективные химические материалы и технологии
- Контрольные вопросы к теме №8
- Тема 9. Специфика, структура и проблемное поле современного биологического познания
- Биология XX века: познание молекулярного уровня жизни
- Сущность и определение жизни
- Основные концепции происхождения жизни
- II. Онтогенетический: а) клеточный; б) тканевой; в) организменный.
- III. Надорганизменный уровень
- Человек как биосоциальное существо. Его место и роль в социо-природном комплексе
- Проблема происхождения человека: концепции антропогенеза
- Контрольные вопросы к теме №9
- Раздел III Социальные и прикладные проблемы естествознания Тема 10. Социальное измерение современного естествознания. Естественнонаучные основы современных технологий
- Экологизация естествознания
- 4. Парниковый эффект.
- 5. Сохранение водных ресурсов.
- 6. Захоронение радиоактивных отходов.
- Естественнонаучные основы современных технологий
- Контрольные вопросы к теме №10
- Заключение
- Античная протонаука. Атомистика. Геоцентрическая космология. Развитие математики и механики
- Естествознание эпохи средневековья
- II. Классическая – аналитическая стадия познания природы Естествознание эпохи Возрождения и Нового времени. Научные революции в истории естествознания
- Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- Химия в механистическом мире
- Естествознание Нового времени и проблема философского метода
- Третья научная революция. Диалектизация естествознания
- Очищение естествознания от натурфилософских представлений
- Исследования в области электромагнитного поля и начало крушения механистической картины мира
- III. Неклассическое естествознание XX века Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- IV. Становление постнеклассического – интегрального естествознания
- Особенности развития науки в хх столетии
- Физика микромира. Современная атомистика
- Астрофизика. Релятивистская космология
- Достижения в основных направлениях современной химии
- Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии
- Молекулярная биология
- Расшифровка №генома человека
- Кибернетика и синергетика
- Самые выдающиеся ученые хх столетия
- Открытия и научные концепции (теории), в наибольшей степени повлиявшие на развитие цивилизации в XX веке
- Наиболее значимые технологии и изобретения
- Вопросы к зачету
- Литература
- Краткий словарь специальных терминов