4.1. Классическая механика и формирование механической научной картины мира.
Если кинематика изучает движение геометрического объекта (т.е. не обладающего никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени), то динамика изучает движение реальных тел под действием приложенных к ним сил, т.е. под действием других тел. Установленные Ньютоном три закона механики лежат в основе динамики. Непосредственно их можно применять к простейшему случаю движения, когда движущееся тело рассматривается как материальная точка, т.е. когда размер и форма тела не учитывается и когда движение тела рассматривается как движение точки, обладающей массой. В кипятке для описания движения точки можно выбрать любую систему координат, относительно которой определяются характеризующие это движение величины. За тело отсчета может быть принято любое тело, движущееся относительно других тел. В динамике имеют дело с инерциальными системами координат, характеризуемыми тем, что относительно них свободная материальная точка движется с постоянной скоростью. Инерциальной системой отсчета называют такую, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчета , движущаяся относительно инерциальной системы отсчета, будет также инерциальной. (Все инерциальные системы отсчета равноправны, т.е. во всех таких системах законы физики одинаковы.)
Установить инерциальную систему координат с абсолютной точностью невозможно, поскольку для этого надо найти тело, на которое не действуют другие тела. За таковую нельзя принимать не только системы, связанные с Землей и Солнцем, но и даже с центром Галактики. Следовательно, понятие инерциальной системы координат есть абстракция, которая используется (как и всякое абстрактное понятие) в применении к физическим объектам с определенной степенью точности.
Закон инерции впервые был установлен Галилеем для случая горизонтального движения: когда тело движется по горизонтальной плоскости, то его движение является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Ньютон дал более общую формулировку закону инерции как первому закону движения: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние. Важно отметить, что недостатком данной формулировки закона являлось то, что в ней не содержалось указания на необходимость отнесения движения к инерциальной системе координат. Дело заключается в том, что Ньютон не пользовался понятием инерциальной системы координат - вместо этого он вводил понятие абсолютного пространства (однородного и неподвижного), с которым и связывал некую абсолютную систему координат, относительно которой и определялась скорость тел. Когда бессодержательность абсолютного пространства как абсолютной системы отсчета была выявлена, закон инерции стал формулироваться иначе: относительно инерциальной системы координат свободное тело сохраняет состояние покоя или равномерного прямолинейного движения.
Второй закон механики гласит: произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует. Т.е. Ньютон в формулировке второго закона оперирует понятием количества движения, понимаемым как мера движения, пропорциональная массе и скорости. Количество движения - величина векторная (Ньютон учитывал направление движения при формулировании правила параллелограмма скоростей).Но это понятие в истории науки не удержалось (и сейчас заменено понятием импульса), поскольку было неясно, чем измерять движение. Декарт количество движения измерял произведением массы на скорость, Лейбниц - произведение массы на квадрат скорости (называя количество движения живой силой). Между сторонниками первого и второго возникла дискуссия. Даламбер показал эквивалентность обеих мер измерения (если, например, тело тормозится под действием силы, то тормозящая сила определяется количеством движения mv, если известно время торможения, и выводится из mv2/2, если известен путь торможения). Истинная суть обеих мер движения будет выяснена позже, когда будет открыт закон сохранения энергии.
Третий закон Ньютона гласит: действию всегда есть равное и противоположное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны. Иначе говоря, силы, с которыми действуют два тела друг на друга, равны по величине и направлены в противоположные стороны. Ньютон распространил действие этого закона на случай и столкновения тел, и на случай их взаимного притяжения.
Из трех фундаментальных законов движения Ньютона вытекают следствия, одно из которых - сложение количества движения по правилу параллелограмма. Если Декарт исходил из признания неизменности количества движения в мире, то Ньютон придерживался противоположного мнения.
Ускорение тела зависит от величин, характеризующих действие других тел на данное тело, а также от величин, определяющих особенности этого тела. Механическое действие на тело со стороны других тел, которое изменяет скорость движения данного тела, называют силой. Она может иметь разную природу (сила тяжести, сила упругости и т.д.).Изменение скорости движения тела зависит не от природы сил, а от их величины. Поскольку скорость и сила - векторы, то действие нескольких сил складывается по правилу параллелограмма. Свойство тела, от которого зависит приобретаемое им ускорение, есть инерция, измеряемая массой. В классической механике, имеющей дело со скоростями, значительно меньшими скорости света, масса является характеристикой самого тела, не зависящей от того, движется оно или нет. Масса тела в классической механике не зависит и от взаимодействия тела с другими телами. Это свойство массы побудило Ньютона принять массу за меру материи и считать, что величина ее определяет количество материи в теле. Таким образом, масса стала пониматься как количество материи. (Впоследствии, с созданием теории относительности, выяснится, что масса тела не является постоянной величиной, а зависит от скорости его движения, его энергии. Так, чем выше температура тела, тем больше его масса. Т.е. масса тела характеризует и состояние тела. Поэтому понятие количества материи из современного научного обихода исчезло как не имеющее смысла). Количество материи доступно измерению, будучи пропорциональным весу тела. Вес - это сила, с которой тело действует на опору, препятствующую его свободному падению. (Числено вес равен произведению массы тела на ускорение силы тяжести. Вследствие сжатия Земли и ее суточного вращения вес тела изменяется с широтой и на экваторе на 0,5% меньше, чем на полюсах). Поскольку масса и вес строго пропорциональны, оказалось возможным практическое измерение массы или количества материи. Понимание того, что вес является переменным воздействием на тело, побудило Ньютона установить и внутреннюю характеристику тела - инерцию, которую он рассматривал как присущую телу способность сохранять равномерное прямолинейное движение, пропорциональную массе. Массу как меру инерции можно измерять с помощью весов, как это делал Ньютон. В состоянии невесомости массу можно измерять по инерции. Измерение по инерции является общим способом измерения массы. Но инерция и вес являются различными физическими понятиями. Их пропорциональность друг другу весьма удобна в практическом отношении - для измерения массы с помощью весов. Таким образом, установление понятий силы и массы, а также способа их измерения позволило Ньютону сформулировать второй закон механики. Итак, масса есть одна из основных характеристик материи, определяющая ее инертные и гравитационные свойства - масса как мера инертности по отношению к действующей на него силе (масса покоя) и масса как источник поля тяготения эквивалентны.
Первый и второй законы механики относятся соответственно к движению материальной точки или одного тела. При этом учитывается лишь действие других тел на данное тело. Однако всякое действие есть взаимодействие. Поскольку в механике действие характеризуется силой, то если одно тело действует на другое с определенной силой, то второе действует на первое с той же силой. Третий закон механики и фиксирует это: действию всегда соответствует равное и противоположно направленное противодействие; иначе: действия двух тел друг на друга всегда равны по величине направлены в противоположные стороны. (В формулировке закона под действием и противодействием понимаются действующие на тела силы). В формулировке Ньютона третий закон механики справедлив лишь для случая непосредственного взаимодействия сил или при мгновенной передаче действия одного тела на другое. В случае передачи действия за конечный промежуток времени данный закон применяется тогда, когда временем передачи действия можно пренебречь.
Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места - свободные тела в ней будут с течением времени менять свою скорость движения. В инерциальных системах отсчета второй закон Ньютона можно сохранить, но для этого надо вводить силы инерции. В классической механике эти силы имеют формальный характер, поскольку они вводятся лишь для удобства расчета движения тел в ускоренной системе отсчета. В рамках теории относительности силы инерции обладают свойствами силы тяготения - ускорение сил инерции, как и сил тяготения, не зависит от массы тел, т.е. они эквивалентны. Но поскольку силы тяготения имеют источник в виде масс , а силы инерции имеют другой характер, то в принципе можно отличить силы инерции от сил тяготения. Поэтому о действии принципа эквивалентности можно говорить лишь локально.
- 1. Естествознание как феномен культуры.
- Естествознание как комплекс наук о природе.
- 1.2. Проблема «двух культур» в развитии науки.
- 1.3. Сущность математики, история ее развития и роль в формировании современного естествознания.
- 1.4. Математика как специфический язык естествознания.
- Основы методологии науки.
- 2.1. Познание как процесс отражения действительности
- 2.2. Формы познания, их соотношение.
- 2.3. Достоверность научного знания и критерии его ограничения.
- Общие модели развития науки. Роль научных революций в истории науки.
- Формы и функции научного знания.
- Структура и специфика научного знания.
- Общие методы научного познания.
- Научный эксперимент как основа точного естествознания
- История науки и естествознания.
- 3.1. Генезис науки. Общие положения.
- 3.2. Исторические этапы научного познания природы.
- 3.3. Особенности научно-технической революции.
- Системный подход в современном естествознании.
- 3.5. Понятие научной картины мира.
- Концепции и принципы классического естествознания.
- 4. Концепции и принципы классического естествознания.
- 4.1. Классическая механика и формирование механической научной картины мира.
- 4.2. Рождение небесной механики: Коперник, Браге, Кеплер
- 4.3. Классическая концепция Ньютона. Лаплассовский детермизм.
- Создание сто
- Постулаты Эйнштейна
- Понятие об общей теории относительности (ото). Искривленное пространство-время.
- Кривизна пространства-времени
- Экспериментальные подтверждения ото. Эффекты, связанные с ускорением систем отсчёта
- Гравитационное отклонение света
- Чёрные дыры
- Орбитальные эффекты
- Иерархия структур в микро-, макро- и мегамире
- 7.2. Модели ядра, атома. Типы взаимодействий, превращения частиц
- «Катастрофа Рэлея-Джинса». Квантовая природа излучения, гипотеза Планка
- Ультрафиолетовая катастрофа
- Кванты и закономерности внешнего фотоэффекта. Опыты Столетова
- Законы внешнего фотоэффекта
- 7.5. Реальность квантов: опыт Комптона и комбинационное рассеяние света.
- Постулаты Бора. Принцип Паули
- 7.7. Соотношение неопределенностей.
- Современная научная картина мира. Концепция неоднородной расширяющейся Вселенной.
- 8.1. Особенности и новые направления современной астрономии
- 8.2. Мир Фридмана
- 8.3. Теория инфляции и теория Большого Взрыва.
- 8.4. Структурная организация Вселенной
- 8.6. Концепции возникновения планетарных систем. Эволюция Солнечной системы
- 8.8. Земля и особенности ее строения. Внутреннее строение Земли
- Земная кора
- Поверхность Земли
- Биосфера и космос.
- 9.1. Уровни организации строения вещества и систем. Единство и многообразие живого.
- 9.2. Основные концепции эволюции живой природы Принципы эволюции
- История жизни на Земле
- 9.3. Ноосфера как часть биосферы Земли
- История развития и достигнутый уровень технологии
- Применение в научных исследованиях
- Генная инженерия человека
- 9.5. Концепции самоорганизации: синергетика.
- Синергетический подход в современном познании, основные принципы
- Информация как семантическое свойство материи