Симметрии пространства-времени
Как сказано выше, обычно выделяют внешние и внутренние симметрии. Внутренние симметрии – это геометрические и калибровочные симметрии самой материи, отражающие инвариантность (независимость) свойств элементарных частиц и их взаимодействий относительно определенных преобразований. Большинство из них ярко проявляются лишь в микромире, присутствуя на макро- и мегауровне в скрытом виде. Внешние симметрии – это симметрии пространственно-временного континуума, одинаково ярко проявляющиеся на всех уровнях организации материи.
Выделяют следующие симметрии пространства-времени:
1. Однородность пространства. Это – сдвиговая симметрия пространства. Она заключается в эквивалентности, равенстве всех точек пространства, то естьотсутствии в пространстве каких-либо выделенных точек. Параллельный перенос (сдвиг) системы как целого в пространстве не приводит к изменению ее свойств, то есть физические законы инвариантны относительно сдвигов в пространстве.
2. Изотропность пространства. Это – поворотная симметрия пространства. Она заключается в равенстве всех направлений в пространстве, то есть вотсутствии в пространстве выделенных направлений. Поворот системы как целого в пространстве не приводит к изменению ее свойств, то естьфизические законы инвариантны относительно поворотов в пространстве.
3. Однородность времени. Сдвиговая симметрия времени отражает равенство всех точек времени, то естьотсутствие выделенных точек начала отсчета времени. Перенос системы как целого во времени не приводит к изменению ее свойств, то естьфизические законы не меняются с течением времени.
Что касается изотропности времени, то вопрос о наличии этой симметрии долгое время оставался открытым и во многом остается дискуссионным до сих пор. Так, в классической механике время симметрично: идеальные механические процессы полностью обратимы, и “поворот во времени” не приводит к изменению законов механики. В ОТО, где время, наряду с пространством, рассматривается как одна из геометрических координат, также постулируется эквивалентность его прямого и обратного течения. Подавляющее большинство элементарных процессов, протекающих в результате сильного, электромагнитного и слабого взаимодействий, также симметричны по отношению к этому преобразованию (за исключением распадов K0L-мeзонов). Но в то же время, развитие термодинамики (см. тему 2.5) показало, что в макроскопических процессах, связанных с превращением энергии, происходит ее необратимое рассеивание. Таким образом, все реальные процессы, происходящие на уровнемакро- и мегаскопических материальных систем не инвариантны по отношению к направлению времени. Его изменение на противоположное привело бы к изменению законов термодинамики: необратимое рассеивание энергии сменилось бы ее самопроизвольной концентрацией. Следовательно, для этих процессов времяанизотропно, не обладает симметрией поворота.
- Оглавление
- Тема 2.1. Развитие представлений о структуре материального мира 4
- Тема 2.2. Свойства объектов микромира 26
- Тема 2.3. Материя в пространстве и времени 46
- Тема 2.4. Законы сохранения как проявление симметрии материального мира 59
- Тема 2.5. Физические свойства объектов макромира. Хаос и самоорганизация 65
- Тема 2.6. Химические процессы в макросистемах 91
- Тема 2.7. Развитие представлений о строении и эволюции мегамира 112
- Тема 2.1. Развитие представлений о структуре материального мира
- Структурные уровни организации материи
- Объекты микромира
- Объекты макромира
- Объекты мегамира
- Корпускулярная и континуальная концепции описания природы
- Взаимодействия и движение структур материального мира Четыре вида взаимодействий и их характеристика
- Концепции близкодействия и дальнодействия
- Характер движения структур мира
- Энергия. Основные виды энергии
- Тема 2.2. Свойства объектов микромира Развитие представлений о строении атомов
- Теория атома н. Бора
- Модель строения атома э. Резерфорда
- Корпускулярно-волновой дуализм в современной физике
- Элементарные частицы и их основные характеристики
- Ядра атомов. Ядерная энергия
- Основные положения теории суперобъединения (единой теории поля)
- Методологические следствия из квантовой концепции
- Тема 2.3. Материя в пространстве и времени Развитие представлений о пространстве и времени
- Классическая концепция
- Характеристики пространства, его трехмерность, однородность, изотропность. Характеристики времени, его анизотропность
- Принцип относительности Галилея (принцип инерции). Инерциальные системы отсчета
- Постулаты специальной теории относительности. Выводы из анализа преобразований Лоренца
- Общая теория относительности: зависимость свойств пространства-времени от распределения материи
- Тема 2.4. Законы сохранения как проявление симметрии материального мира Симметрия как инвариантность. Принципы симметрии
- Симметрии пространства-времени
- Связь законов сохранения с симметрией (теорема Нетер)
- Закон сохранения импульса, закон сохранения момента импульса, закон сохранения заряда, закон сохранения энергии. Фундаментальный характер законов сохранения
- Значение представлений о симметрии в познании объектов микро-, макро-, мегамира
- Тема 2.5. Физические свойства объектов макромира. Хаос и самоорганизация Порядок и беспорядок в природе
- Классическая термодинамика. Состояние. Параметры макросостояния: температура, давление, удельный объем
- Закон сохранения энергии в макроскопических процессах (первое начало термодинамики)
- Принцип возрастания энтропии (второе начало термодинамики) и необратимость времени
- Направленность самопроизвольно протекающих процессов. Тепловая смерть Вселенной. Философский смысл возрастания энтропии
- Молекулярно-кинетический (статистический) метод изучения макросистем. Вероятностный характер возрастания энтропии (Больцман)
- Проблема возникновения упорядоченных структур в природе
- Открытые системы. Неравновесные процессы. Синергетика (Хакен), неравновесная термодинамика (Пригожин)
- Самоорганизация в живой и неживой природе, ее пороговый характер. Диссипативные структуры, флуктуация, бифуркация, аттрактор
- Тема 2.6. Химические процессы в макросистемах Химия как наука
- Основные химические концепции: учение о составе, структурная химия, химическая кинетика и термодинамика, эволюционная химия
- Этапы развития химии
- I. Донаучный этап
- 1. Натурфилософский период
- 2. Алхимический период
- II. Научный этап
- 1. Становление учения о составе
- 2. Становление структурной химии
- 3. Изучение химических процессов
- 4. Эволюционная химия
- Химический элемент. Вещество. Реакционная способность веществ
- Химические процессы
- Связь физических, химических и биологических форм движения материи
- Тема 2.7. Развитие представлений о строении и эволюции мегамира Структура мегамира
- Развитие представлений об организации мегамира. Модели Вселенной
- Геоцентрическая система мира
- Гелиоцентрическая система мира
- Космологические теории классической механики
- Модели устройства Вселенной, созданные на основе общей теории относительности и релятивистской теории тяготения
- Стадии развития Вселенной
- Структура современной Вселенной
- Солнечная система
- Внутреннее строение и история геологического развития Земли