Часть V. Цитоплазма: системы энергообеспечения клеток
Для осуществления любых клеточных функций необходимы затраты энергии. Живые организмы получают её, или используя внешние источники, например за счет энергии Солнца, или же используя энергию переноса электронов при окислении различных субстратов. В обоих случаях клетками синтезируются молекулы АТФ (аденозинтрифосфат), некая разменная “топливная” единица, обладающая высокоэнергетическими фосфатными связями, при разрушении которых выделяемая энергия может тратиться на любые клеточные функции: на активный транспорт веществ, на синтетические процессы, на механическую работу и т.д. (рис. 197). В клетках животных синтез АТФ осуществляется специальными органеллами, митохондриями, в растительных клетках кроме митохондрий в энергообеспечении огромную роль играют хлоропласты, один из видов пластид. Эти два органоида имеют общий сходный план строения, и выполняют сходные энергетические функции. Митохондрии и пластиды – двумембранные органоиды эукариотических клеток.
Общим в их строении является то, что они отделены от цитоплазмы (гиалоплазмы) двумя мембранами – внешней и внутренней. Поэтому у митохондрий и пластид различают две полости или пространства: одну между внешней и внутренней мембранами (межмебранные) и другую, основную (матрикс), ограниченную внутренней мембраной. Другой общей чертой в их строении является то, что внутренняя мембрана образует складки, мешки, гребни, глубокие впячивания, направленные внутрь матрикса. На таких мембранных гребнях и впячиваниях локализуются активные метаболические центры этих органелл – полиферментные комплексы, определяющие выполнение основных физиологических функций (окислительное фосфорилирование для митохондрий, фотофосфорилирование для хлоропластов). В матриксе и тех, и других располагаются элементы авторепродукции этих клеточных мембранных органелл и локализованы ферменты некоторых метаболических процессов. Система авторепродукции двумембранных органелл представлена ДНК, РНК и рибосомами, которые могут определять часть генетических, автономных свойств этих структур.
Главными функциональными нагрузками пластид и митохондрий являются процессы энергетического характера, приводящие к синтезу специфических молекул аденозинтрифосфата (АТФ), являющихся донорами энергии для любых клеточных процессов.
В митохондриях, хлоропластах, так же как в бактериях, АТФ синтезируется одним и тем же способом: с помощью энергии, отдаваемой электронами при продвижении их по электроннотранспортной цепи белков внутренний мембраны, происходит перенос, “перекачка” протонов с внутренней стороны мембраны на внешнюю. Вследствие этого возникает электрохимический протонный градиент, энергия которого с помощью других белков используется для синтеза АТФ.
В хлоропластах растений, кроме того, при использовании энергии АТФ, образованной в результате фосфорилирования, происходит важнейший биологический процесс – связывание СО2 и синтез углеводов.
- Часть I. Введение. Предмет клеточной биологии
- Часть I. Введение. Предмет клеточной биологии
- Глава 1. Клеточная теория
- 1. Клетка – элементарная единица живого
- 2. Клетка – единая система сопряженных функциональных единиц
- 3. Гомологичность клеток
- 4. Клетка от клетки
- 5. Клетки и многоклеточный организм
- 6. Тотипотентность клеток
- Глава 2. Методы клеточной биологии
- Световая микроскопия
- Витальное (прижизненное) изучение клеток
- Изучение фиксированных клеток
- Электронная микроскопия
- Контрастирование корпускулярных объектов
- Ультрамикротомия
- Фракционирование клеток
- Часть II. Строение и химия клеточного ядра Глава 3. Центральная догма молекулярной биологии
- Глава 4. Морфология ядерных структур Роль ядерных структур в жизнедеятельности клетки
- Ядерные компоненты прокариот
- Ядро эукариотических клеток
- Эухроматин и гетерохроматин
- Хромосомный цикл
- Общая морфология митотических хромосом
- Клеточный цикл эукариот
- Эндорепродукция и полиплоидия
- Глава 5. Структура и химия хроматина
- Основные белки хроматина - гистоны
- Нуклеосомы при репликации и транскрипции
- Второй уровень компактизациии – 30 нм фибрилла
- Негистоновые белки
- Глава 6. Ядерный белковый матрикс Общий состав ядерного матрикса
- Днк ядерного белкового матрикса
- Четвертый – хромонемный уровень упаковки хроматина
- Глава 7. Общая организация митотических хромосом
- Часть III
- Глава 8. Ядрышко – источник рибосом
- Ядрышко во время митоза: периферический хромосомный материал
- Глава 9. Нерибосомные продукты клеточного ядра Транскрипция нерибосмных генов
- Морфология рнп-компонентов в ядре
- Глава 10. Ядерная оболочка
- Часть IV. Цитоплазма
- Глава 11. Гиалоплазма и органеллы
- Глава 12. Общие свойства биологических мембран
- Глава 13. Плазматическая мембрана
- Клеточная стенка (оболочка) растений
- Глава 14. Вакуолярная система внутриклеточного транспорта
- Глава 15. Аппарат (комплекс) Гольджи
- Глава 16. Лизосомы
- Глава 17. Гладкий ретикулум и другие мембранные вакуоли
- Часть V. Цитоплазма: системы энергообеспечения клеток
- Глава 18. Митохондрии – строение и функции
- Глава 19. Пластиды
- Часть VI. Цитоплазма: Опорно-двигательная система (цитоскелет)
- Глава 20. Промежуточные филаменты
- Глава 21.Микрофиламенты
- Глава 21. Микротрубочки
- Глава 23. Клеточный центр
- Двигательный аппарат бактерий
- Часть VII. Механизмы клеточного деления. Глава 24. Митотическое деление клеток. Общая организация митоза
- Различные типы митоза эукариот
- Центромеры и кинетохоры
- Длительность фаз митоза
- Глава 25. Мейоз
- Глава 26. Регуляция клеточного цикла
- Фактор стимуляции митоза
- Циклины
- Регуляция клеточного цикла у млекопитающих
- Глава 27. Гибель клеток: некроз и апоптоз
- Апоптоз