3. Структурные элементы нервной системы
В основе современного представления о структуре и функции ЦНС лежит нейронная теория, которая представляет собой частный случай клеточной теории. Нейронная теория, рассматривающая мозг как результат функционального объединения отдельных клеточных элементов – нейронов, получила широкое распространение и признание в начале 20 столетия.
Большое значение для ее признании имели исследования испанского ученого нейрогистолога Р.Кахала и английского физиолога Ч.Шеррингтона. Окончательные доказательства полной структурной обособленности нервных клеток были получены с помощью электронного микроскопа.
Учеными доказано, что нервная система построена из двух типов клеток: нервных и глиальных. При этом количество глиальных клеток в 8-9 раз превышает количество нервных. Несмотря на это, именно нервные клетки обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.
Таким образом, основной структурно-функциональной единицей нервной системы является нейрон (нервная клетка, нейроцит) (Рис. 1).
Рис.1. Нервные клетки:
А – мультиполярный нейрон; 1 – нейрит;
Б – униполярный нейрон; 2 – дендрит
В – биполярный нейрон
Нейрон состоит из тела (сомы), которое содержит различные внутриклеточные органеллы, необходимые для обеспечения жизнедеятельности клетки. Кроме того, в теле нейрона протекают все процессы химического синтеза, откуда продукты этого синтеза поступают в различные отростки, которые отходят от тела нейрона. Тело нейрона покрыто специальной оболочкой – мембраной. От тела клетки берут начало отростки нервной клетки – дендриты и аксоны. В большинстве случаев дендриты сильно разветвляются, вследствие чего их суммарная поверхность значительно превосходит поверхность тела клетки. По количеству имеющихся отростков нейроны классифицируются следующим образом:
1)биполярные нейроны – имеют два отростка;
2)мультиполярные нейроны – имеют более двух отростков;
3)униполярные нейроны – имеют один хорошо выраженный отросток.
Как полагают ученые, мозг человека состоит из 2,5 умноженных на 10 в десятой степени нейронов. Если подсчитать это число, то оно практически совпадет с числом, которое определяет количество звезд в Галактике.
Основное функциональное назначение отростков – обеспечение распространения нервных импульсов. Проведение нервного импульса от тела нейрона к другой нервной клетке или к рабочей ткани, органу осуществляется по аксону (нейриту) (от греческого axon – ось). Любой нейрон может иметь лишь только один аксон. Отростки, проводящие нервные импульсы к телу нейрона называются дендритами (от греческого dendron, что означает дерево).
Необходимо отметить, что нервная клетка способна пропускать нервный импульс только в одном направлении – от дендрита через тело нервной клетки к аксону и через него далее, - к месту назначения.
В соответствии с морфофункциональными характеристиками выделяют три типа нейронов.
1. Чувствительные, рецепторные, или афферентные нейроны. Тела этих нервных клеток всегда расположены все головного или спинного мозга, в узлах (ганглиях) периферической нервной системы. Один из отростков, отходящих от тела нервной клетки, следует на периферию к тому или иному органу и заканчивается там чувствительным окончанием – рецептором, который способен трансформировать энергию внешнего воздействия (раздражение) в нервный импульс. Второй отросток направляется в ЦНС, спинной мозг или стволовую часть головного мозга в составе задних корешков спинномозговых нервов или соответствующих черепных нервов.
Рецепцию, т.е. восприятие раздражения и начавшееся распространение нервного импульса по нервным проводникам к центрам, И.П.Павлов относил к началу процесса анализа.
2. Замыкательный, вставочный, ассоциативный, или кондукторный, нейрон. Этот нейрон осуществляет передачу возбуждения с афферентного (чувствительного) нейрона на эфферентные. Суть этого процесса заключается в передаче полученного афферентным нейроном сигнала эфферентному нейрону для исполнения в виде ответной реакции. И.П.Павлов определил это действие как «явление нервного замыкания». Замыкательные (вставочные) нейроны лежит в пределах ЦНС.
3. Эффекторный, эфферентный (двигательный или секреторный) нейрон. Тела этих нейронов находятся в ЦНС (или на периферии – в симпатических, парасимпатических узлах).
Нейроны в нервной системе, вступая в контакт друг с другом, образуют цепи, по которым и передаются (движутся) нервные импульсы. Передача нервного импульса от одного нейрона к другому происходит в местах их контактов и обеспечивается особого рода образованиями, получившими название межнейронных синапсов. Синапсы принято делить на аксосоматические, когда окончания аксона одного нейрона образуют контакты с телом другого нейрона, и аксодендритические, когда аксон вступает в контакт с дендритами другого нейрона. Отдельные нервные клетки образуют до 2000 синапсов каждая.
Нервные отростки, покрытые оболочками, образуют нервные волокна. Различают две основных группы нервных волокон:
- миелиновые (мякотные);
- безмиелиновые (безмякотные).
Нервы построены из мякотных и безмякотных нервных волокон и соединительно-тканных оболочек. Мякотные нервные волокна входят в состав чувствительных и двигательных нервов; безмякотные нервные волокна, в основном, принадлежат автономной нервной системе.
Между нервными волокнами располагается тонким слоем соединительная ткань – эндонервий.
Снаружи нерв покрывает волокнистая соединительная ткань – принервий.
Выделяют следующие физиологические свойства нервного волокна:
Возбудимость. В 1791 г. ученый французский ученый Гальвани выдвинул идею о существовании «живого электричества» в нервах и мышцах. Его соотечественник Маттеучи в 40-е годы Х1Х столетия получил первые доказательства электрической природы нервного импульса, а еще один ученый Гельмгольц, ставший впоследствии знаменитым физиком, в 1850 г. измерил скорость проведения нервного импульса, определив передачу его по нерву не как физическое проведение, а как активный биологический процесс. В связи с этим, нервные импульсы получили название потенциалов действия. После проведенных исследований широкое распространение получили идеи о том, что нейрон является клеткой, предназначенной для выработки импульсов, которые являются непосредственными средствами обмена сигналами между нервными клетками.
Проводимость. Как мы с вами отмечали, функция аксона заключается в проведении нервных импульсов. Проведение нервного импульса можно уподобить распространению электрического тока. Как правило, потенциал действия зарождается в начальном, ближайшем к телу клетки сегменте аксона и пробегает по аксону к его окончаниям. За счет различных ионов (натрия, калия и т.д.), которые постоянно перемещаются в следствии диффузии через мембрану живой клетки, на ее поверхности формируется заряд, который получил название мембранный потенциал. В состоянии покоя на внутренней стороне мембраны регистрируется отрицательный потенциал. Постоянный отрицательный потенциал, регистрируемый на нейронах, принято называть мембранным потенциалом покоя, а данное явление – поляризацией. Уменьшение степени поляризации (смещение потенциала к нулю) называют деполяризацией. Увеличение – гиперполяризацией.
Целостность нервного волокна. Возбуждение распространяется по нервному волокну лишь при сохранении его анатомической и физиологической целостности. Потеря структурных и физиологических свойств в результате охлаждения, воздействия токсических веществ и т.д. ведет к нарушению проводимости нервного волокна.
Двустороннее проведение возбуждения по нервному волокну. Данное явление открыто русским ученым Р.И.Рабухиным, который показал, что возбуждение, возникнув в какой-либо области нервного волокна, распространяется в обе стороны, независимо от того, какое это волокно – центростремительное или центробежное.
Свойство изолированного проведения нервного импульса. Если возбуждение возникло в одном нервном волокне, то оно не может перейти на соседнее нервное волокно, находящееся в одном и том же нерве. Важное значение этого свойства проявляется в том, что большинство нервов являются смешанными, состоящими из тысяч функционально различных нервных волоокое.
Относительная неутомляемость нерва. Это свойство было выделено в 1884 г. ученым Н.Е.Введенским, который показал, что нерв сохраняет способность к проведению возбуждения даже при длительном непрерывном его раздражении, т.е. нерв практически неутомляем. Только лишь изменения морфофункциональных свойств нерва постепенно могут подавлять его проводимость.
Функциональная лабильность нервной ткани. Данное понятие также сформулировано Н.Е.Введенским в 1892 г., который обнаружил, что нерв может отвечать не данную частоту раздражения такой же частотой возбуждения только до определенного предела. Мерой лабильности, по Н.Е.Введенскому является наибольшее число возбуждений, которое ткань может воспроизвести в 1 секунду в полном соответствии с частотой раздражений. Например, наибольшее число импульсов двигательного нерва теплокровных составляет до 1000 в 1 сек. Возбудимая ткань в зависимости от функционального состояния способна изменять свою лабильность как в сторону ее понижения, так и повышения. В этом случае возбудимая ткань начинает усваивать новые, более высокие (или низкие), ранее недоступные ей ритмы активности. Снижение функциональной лабильности в процессе жизнедеятельности ведет к торможению функции.
Совокупность нервных клеток (нейронов), расположенных на различных уровнях ЦНС, достаточных для приспособительной регуляции функции органа согласно потребностям организма называют нервными центрами. Например, нейроны дыхательного центра располагаются и в спинном мозге, и в продолговатом мозге, и в мосту. Однако среди нескольких групп клеток, расположенных на различных уровнях ЦНС, как правило, выделяется главная часть центра. Так, главная часть дыхательного центра располагается в продолговатом мозге и включает инспираторные и экспираторные нейроны.
Нервный центр реализует свое влияние на эффекторы либо непосредственно с помощью эфферентных импульсов соматической и вегетативной нервной системы, либо с помощью активации и выработки соответствующих гормонов.
Также необходимо отметить, что пространство между нейронами заполняют клетки глии. Глия обеспечивает структурную и метаболическую опору для сети нейронов, обеспечивает их взаиморасположение. Среди клеток глии различают:
1)астроциты, клетки, находящиеся в головном и спинном мозге;
2)олигодендроциты, тесно связанные в ЦНС с длинными нервными путями, образованными пусками аксонов, а также с нервами;
3)эпендимные клетки, которые в основном образуют непрерывную эпителиальную ткань, выстилающую желудочки мозга;
4)микроглию, которая состоит из мелких клеток, разбросанных в белом и сером веществе мозга.
Вопросы для самоконтроля:
Что такое нейрон?
Каково его строение?
В чем заключается функциональное назначение отростков нейрона?
Что такое синапс?
Раскройте подходы к классификации синапсов.
Дайте характеристику типов нейронов.
Охарактеризуйте нервное волокно.
Дайте характеристику физиологических свойств нервного волокна.
Что такое нервный центр?
Что такое «глия» и каково ее функциональное назначение?
- Физиологические основы психической деятельности
- Часть 1 физиология центральной нервной системы
- Оглавление
- Введение
- 1. Общая характеристика физиологии как науки
- 2. Общее понятие о нервной системе
- 3. Структурные элементы нервной системы
- 4. Возбуждение и торможение в центральной нервной системе
- 5.Рефлекторный принцип деятельности нервной системы
- 6. Физиология спинного мозга
- Основные проводящие пути спинного мозга
- 7.Физиологические механизмы функционирования головного мозга
- Ствол головного мозга
- Тема 8. Промежуточный мозг
- Таламус
- Гипоталамус
- Тема 9. Мозжечок
- Тема 10. Лимбическая система.
- Тема 11. Базальные ганглии
- Тема 12. Новая кора большого мозга
- Список литературы
- Терминологический справочник
- Т.А.Серебрякова физиологические основы психической деятельности
- Часть 1