2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
В ранней древнегреческой натурфилософии господствовала идея о некоторых исходных первоначалах, лежащих в основе мироздания. К таким первоначалам, из которых якобы создается весь окружающий мир, относили либо так называемые четыре «стихии» (воду, воздух, огонь, землю), либо какое-то мифическое первовещество. Подобное первовещество, придуманное древнегреческим натурфилософом Анаксимандром и названное им «апейрон» (в переводе «беспредельное», «неопределенное»), первоначально представляло собой неопределенную туманную массу, находившуюся в постоянном круговом вращении, из которой, в конце концов, якобы произошло все многообразие мира.
Но уже в этот период на смену подобным представлениям о мире приходит стройное по тому времени атомистическое учение о природе. Выдающимся представителем новой натурфилософской идеологии атомизма был Демокрит (ок. 460-370 гг. до н.э.). Основные принципы его атомистического учения можно свести к следующим положениям.
1. Вся Вселенная состоит из мельчайших материальных частиц — атомов и незаполненного пространства — пустоты. Наличие последней является обязательным условием для осуществления перемещения атомов в пространстве.
2. Атомы неуничтожимы, вечны, а потому и вся Вселенная, из них состоящая, существует вечно.
3. Атомы представляют собой мельчайшие, неизменные, непроницаемые и абсолютно неделимые частицы — последние, образно говоря, «кирпичики мироздания».
4. Атомы находятся в постоянном движении, изменяют свое положение в пространстве.
5. Различаются атомы по форме и величине. Но все они настолько малы, что недоступны для восприятия органами чувств человека. Форма их может быть весьма разнообразной. Самые малые атомы имеют, например, сферическую форму; Это, по выражению Демокрита «атомы души и человеческой мысли».
6. Все предметы материального мира образуются из атомов различных форм и различного порядка их сочетаний (подобно тому как слова образуются из букв).
Представляет интерес учение Демокрита о строении Вселенной. Из атомов, считал он, образуются не только окружающие нас предметы, но и целые миры, которых во Вселенной бесчисленное множество. При этом одни миры еще только формируются, другие – находятся в расцвете, а третьи уже разрушаются. Новые тела и миры возникают от сложения атомов. Уничтожаются они от разложения на атомы.
Идеи атомистики получили свое развитие в учении Эпикура (341-270 гг. до н.э.). Эпикур разделял точку зрения Демокрита, согласно которой мир состоит из атомов и пустоты, а все существующее во Вселенной возникает в результате соединения атомов в различных комбинациях. Вместе с тем Эпикур внес в описание атомов, сделанное Демокритом, некоторые поправки: атомы не могут превышать известной величины, число их форм ограничено, атомы обладают тяжестью в т. д. Но самое главное в атомистическом учении Эпикура — это попытка найти какие-то внутренние источники жизни атомов. Он высказал мысль, что изменение направления их движения может быть обусловлено причинами, содержащимися внутри самих атомов. Это был шаг вперед по сравнению с Демокритом, в учении которого атом непроницаем, не имеет внутри себя никакого движения, никакой жизни.
Одним из величайших ученых и философов античности, чья деятельность совпала с афинским периодом развития древнегреческой натурфилософии, был Аристотель (384-352 гг.. до н.э.).
В круг естественнонаучных интересов Аристотеля входили математика, физика, астрономия, биология. Среди естественных наук ему удалось достичь наибольших успехов в изучении живой природы. Он определил жизнь как способность к самообеспечению, а также к независимому росту и распаду. В своих исследованиях он упоминает несколько сот различных животных. Причем описывает многих из них с такой точностью и столь детально, что не оставляет сомнения в том, что это — его собственные наблюдения. Многие факты, изложенные Аристотелем, были «переоткрыты» в последующие века. Ему было известно, например, что киты — живородящие животные, он различал хрящевых рыб и позвоночных, описывал развитие куриного яйца вплоть до появления цыпленка и т. д.
Вместе с тем у Аристотеля было немало наивных и даже ложных представлений о явлениях природы. Следуя своему учителю — Платону, он, например, приписывал движению некоторое «врожденное» свойство, заставляющее все на Земле стремиться к своему «естественному месту». Поэтому, считал он, дым поднимается вертикально вверх, а камень падает вертикально вниз.
В истории науки Аристотель известен также как автор космологического учения, которое оказало огромное влияние на миропонимание многих последующих столетий. Космология Аристотеля — геоцентристическое воззрение: Земля, имеющая форму шара, неподвижно пребывает в центре Вселенной. Шаровидность Земли Аристотель выводит из наблюдений, сделанных им во время лунных затмений. Эти наблюдения показали круглую форму земной тени, надвигающейся на диск Луны. Только шаровидное тело, каким и является Земля, — объяснял Аристотель, — может отбрасывать в сторону, противоположную Солнцу, тень, которая представляется темным кругом на лунном диске. К атому же выводу — о шаровидности Земли — ведет, по мнению Аристотеля, и свойственное Земле тяготение к центру Вселенной. Как результат этого тяготения должна была получиться шарообразная форма.
Аристотель разделял мир на две области, качественно отличающиеся друг от друга: область Земли и область Неба. Область Земли имеет в своей основе четыре элемента: землю, воду, воздух и огонь (это те же четыре «стихии», о которых говорили представители натурфилософии доаристотелевского периода). Область Неба имеет в своей основе пятый элемент — эфир, из которого состоят небесные тела. Самые совершенные из них — неподвижные звезды. Они состоят из чистого эфира и настолько удалены от Земля, что недоступны никакому воздействию четырех земных элементов. Иное дало—Луна и планеты. Они также состоят из эфира, во в отличие от неподвижных звезд подвержены некоторому влиянию, по крайней мере, одного из элементов, образующих. Землю. По мнению Аристотеля, за оболочкой воздуха вокруг Земли находится наиболее легкий из земных элементов— огонь, который помещается в пространстве между Землей в Луной в соприкасается с границей эфира.
В отличие от космологических воззрений Демокрита, космология Аристотеля включала представление о пространственной конечности мироздания. В этой конечной протяженности космоса расположены твердые кристально-прозрачные сферы, на которых неподвижно закреплены звезды и планеты. Их видимое движение объясняется вращением указанных сфер. С крайней («внешней») сферой соприкасается «Перводвигатель Вселенной», являющийся источником всякого движения. Он нематериален, ибо это есть Бог (Аристотель рассматривает Бога как разум мирового масштаба, дающий энергию «перводвигатель»).
Древнегреческая натурфилософия прославилась вкладом ее представителей в формирование и развитие математики. Здесь, прежде всего, следует отметить знаменитого древнегреческого мыслителя Пифагора (580-500 гг. до н.э.). Помимо всем известной «теоремы Пифагора» на счету этого античного ученого имеется и ряд других научных достижений. К их числу относится, например, открытие того факта, что отношение диагонали и стороны квадрата не может быть выражена целым числом и дробью. Тем самым я математику было введено понятие иррациональности. Имеются упоминания о том, что Пифагор придерживался мнения о шарообразности Земли, ее вращения вокруг собственной оси. Вместе с тем в своих космологических воззрениях Пифагор был геоцентристом, т.е. считал Землю центром Вселенной.
Важной отличительной чертой миропонимания Пифагора было учение о числе как основе Вселенной. «Самое мудрое в мире — число», — учил он. Считая, что мир состоит из пяти элементов (земли, огня, воздуха, воды и эфиpa), Пифагор увязал их с пятью видами правильных многогранников с тем или иным числом граней. Так, Земля, по его мнению, состоит из частиц кубической формы, огонь — из частиц, имеющих форму четырехгранной пирамиды (тетраэдров), воздух — из восьмигранников (октаэдров), вода— из двадцатигранников (икосаэдров), а эфир— из двенадцатигранников (додекаэдров).
До нашего времени дошел рассказ позднеримского философа Боэция (480-524 гг. н. э.) о том, каким образом Пифагор пришел к своей основной идее, что число — основа всего существующего. Как-то, проходя мимо кузницы, Пифагор заметил, что совпадающие удары не одинаковых по весу молотов производят различные гармоничные созвучия. Вес молотов можно измерить. И, таким образом, качественное явление — созвучие — точно определяется через количество. Отсюда Пифагор сделал вывод, что «число владеет вещами».
Положив в основу космоса число, Пифагор придал этому старому слову обыденного языка новое значение. Это слово стало обозначать упорядоченное числом мироздание.
Весьма плодотворным для древнегреческой науки оказался последний ее период - примерно с 330 по 30 гг. до н.э., — завершившийся с возвышением Древнего Рима. Одним из крупнейших ученых-математиков этого периода был Евклид, живший в III в. до н.э. в Александрии. В своем объемистом труде «Начала» он привел в систему все математические достижения того времени. Состоящие из пятнадцати книг «Начала» содержали не только результаты трудов самого Евклида, но и включали достижения других древнегреческих ученых. В «Началах» были заложены основы античной математики. Созданный Евклидом метод аксиом позволил ему построить здание геометрии, носящей по сей день его имя.
Указанный период в древнегреческой науке характеризовался также и немалыми достижениями в области механики. Первоклассным ученым - математиком и механиком - этого периода был Архимед (287-212 гг. до н.э.). Он решил ряд задач по вычислению площадей поверхностей и объемов, определил значение числа π (представляющего собой отношение длины окружности к своему диаметру). Архимед ввел понятие центра тяжести и разработал методы его определения для различных тел, дал математический вывод законов рычага. Ему приписывают «крылатое» выражение: «Дайте мне точку опоры, и я сдвину Землю». Архимед положил начало гидростатике, которая нашла широкое применение при проверке изделий из драгоценных металлов и определении грузоподъемности кораблей.
Широчайшую известность получил закон Архимеда, касающийся плавучести тел. Согласно атому закону, на всякое тело, погруженное в жидкость, действует поддерживающая сила, равная весу вытесненной телом жидкости, направленная вверх и приложенная к центру тяжести вытесненного объема. Если вес тела меньше поддерживающей силы, тело всплывает на поверхность, причем степень погруженности плавающего на поверхности тела определяется соотношением удельных весов этого тела и жидкости. Если вес тела больше поддерживающей силы, то оно тонет. В случае же, когда вес тела равен поддерживающей силе, это тело плавает внутри жидкости (как рыба или подводная лодка).
Научные труды Архимеда находили приложение в общественной практике. Многие технические достижения того времени связаны с его именем. Ему принадлежат многочисленные изобретения: так называемый «архимедов винт» (устройство для подъема воды на более высокий уровень), различные системы рычагов, блоков, полиспастов и винтов для поднятия больших тяжестей, военные метательные машины. Во время второй Пунической войны Архимед возглавлял оборону своего родного города Сиракузы, осажденного римлянами. Под его руководством были изготовлены весьма совершенные по тому времени машины, метавшие снаряды и не позволявшие римлянам овладеть городом. Когда же осенью 212 г. до н. э. Сиракузы были все же взяты римлянами, Архимед погиб. Существует легенда, что перед смертью он сказал собиравшемуся его убить римскому солдату: «Только не трогай моих чертежей».
К сожалению, научное наследие Архимеда долго не получало той оценки, которой оно заслуживало. Лишь спустя более полутора тысяч лет, в эпоху Возрождения, труды Архимеда были оценены по достоинству и получили дальнейшее развитие.
- Курс лекций тема 1. Естественнонаучная и гуманитарная культуры
- Два типа культуры
- 2. Единство и взаимосвязь естественнонаучной и гуманитарной культур.
- Вопросы для самоконтроля
- Литература
- Тема 2. Научный метод
- Наука в духовной культуре общества
- Объект и субъект науки. Система научных методов
- Вопросы для самоконтроля
- Литература
- Тема 3. Натурфилософия и ее место в истории естествознания
- 1. Возникновение античной науки
- 2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 2. Естествознание эпохи средневековья
- Вопросы для самоконтроля
- Литература
- Тема 4. Научные революции в истории естествознания
- Концепции естествознания и научная картина природы
- Научные революции как смена естественнонаучных картин мира
- Литература
- Дополнительная:
- Вопросы для самоконтроля