logo
Активированные кислородные метаболиты в биологических системах

Глутатионпероксидаза

Для инактивации перекиси водорода в клетках высшых животных существует одно важное семейство ферментов - глутатионпероксидаз (систематическое название «глутатион: перекись-водорода-оксидоредуктаза»), существование которого показано Гордоном Милзом в 1957 г. В 1973 г. Джон. Т. Ротрак с соавт. установили, что в состав ГПО входит селен, и каждая молекула фермента содержала 4 атома Se.

Помимо это клеточной изоформы, получившей при дальнейшей классификации порядковый номер 1 (ГПО1), глутатионпероксидаза представлена селеновыми изоферментами - «желудочно-кишечным» (ГПО2, выделен из цитозоля клеток печени и кишечника), внеклеточным (ГПО3, выявляется в плазме и молоке), ГПО гидроперекисей фосфолипидов (ГПО4) и не содержащими Seизозимами-«секреторным» (ГПО5, обнаруживаемая в придатках яичек) и ГПО7, а также экзотический ГПО6, в состав которой селен либо входит (человек, свинья), либо не входит (мышь, крыса) [7]. Все ГПО в большей или меньшей степени катализируют реакцию восстановления глутатионом нестойких органических гидропероксидов, включая гидропероксиды полиненасыщенных жирных кислот, в стабильные соединения - оксикислоты:

2GSH + ROOH > GSSG + ROH + H2O

В результате взаимодействия с гидропероксидом ROOH селеноцистеиновый остаток фермента переходит из селенола в селененовую кислоту, с которой затем связывается GSHс образованием селененилсульфида:

ГПО-SeH + ROOH>ROH + ГПО-SeOH

ГПО-SeOH + GSH > H2O + ГПО-Se-SG

Прореагировав со второй молекулой глутатиона, ГПО возвращается в исходное состояние:

ГПО-Se-SG + GSH > ГПО-SeH + GSSG

ГПО способны также утилизировать H2O2:

2GSH + H2O2>GSSG + 2H2O

Кроме того, недавно обнаружено, что селеносодержащие ГПО проявляют пероксинитритредуктазную активность, восстанавливая ONOO? до нитрит-аниона NO2?и тем самым предотвращая опасные реакции окисления и нитрования, в которые активно вступает пероксинитрит. Стехиометрия пероксинитритредуктазной реакции аналогична классической глутатионпероксидазной реакции с участием гидропероксидов: взаимодействуя с ONOO?, фермент окисляется до селеновой кислоты и затем восстанавливается до исходного состояния двумя молекулами глутатиона; скорость реакции составляет 8 ? 106M-1c-1[25].

Также селеновые ГПО играют важную роль в регуляции биосинтеза эйкозаноидов, контролируя содержание органических перекисей и поддерживая так называемый «перекисный тонус». Так, циклооксигеназа, переводящаяарахидоновую кислоту в циклоэндогидроперекисьPGH2, активируется гидроперекисью, высокое содержание которой приводит к самоинактивации фермента. Обычная физиологическая концентрация гидроперекисей в клетках млекопитающих составляет около 10-10 М, и её повышение до 10-6 М вызывает активацию циклооксигеназы. Предпологается, что липоксигеназа, отвечающая за синтез лейкотриенов, простациклиновые и тромбоксановыесинтетазы, также являются объектами перекисной регуляции [26]. С этой точки зрения становится ясно, насколько важна функция ГПО в патогенезе воспалительных процессов.