Глутатионпероксидаза
Для инактивации перекиси водорода в клетках высшых животных существует одно важное семейство ферментов - глутатионпероксидаз (систематическое название «глутатион: перекись-водорода-оксидоредуктаза»), существование которого показано Гордоном Милзом в 1957 г. В 1973 г. Джон. Т. Ротрак с соавт. установили, что в состав ГПО входит селен, и каждая молекула фермента содержала 4 атома Se.
Помимо это клеточной изоформы, получившей при дальнейшей классификации порядковый номер 1 (ГПО1), глутатионпероксидаза представлена селеновыми изоферментами - «желудочно-кишечным» (ГПО2, выделен из цитозоля клеток печени и кишечника), внеклеточным (ГПО3, выявляется в плазме и молоке), ГПО гидроперекисей фосфолипидов (ГПО4) и не содержащими Seизозимами-«секреторным» (ГПО5, обнаруживаемая в придатках яичек) и ГПО7, а также экзотический ГПО6, в состав которой селен либо входит (человек, свинья), либо не входит (мышь, крыса) [7]. Все ГПО в большей или меньшей степени катализируют реакцию восстановления глутатионом нестойких органических гидропероксидов, включая гидропероксиды полиненасыщенных жирных кислот, в стабильные соединения - оксикислоты:
2GSH + ROOH > GSSG + ROH + H2O
В результате взаимодействия с гидропероксидом ROOH селеноцистеиновый остаток фермента переходит из селенола в селененовую кислоту, с которой затем связывается GSHс образованием селененилсульфида:
ГПО-SeH + ROOH>ROH + ГПО-SeOH
ГПО-SeOH + GSH > H2O + ГПО-Se-SG
Прореагировав со второй молекулой глутатиона, ГПО возвращается в исходное состояние:
ГПО-Se-SG + GSH > ГПО-SeH + GSSG
ГПО способны также утилизировать H2O2:
2GSH + H2O2>GSSG + 2H2O
Кроме того, недавно обнаружено, что селеносодержащие ГПО проявляют пероксинитритредуктазную активность, восстанавливая ONOO? до нитрит-аниона NO2?и тем самым предотвращая опасные реакции окисления и нитрования, в которые активно вступает пероксинитрит. Стехиометрия пероксинитритредуктазной реакции аналогична классической глутатионпероксидазной реакции с участием гидропероксидов: взаимодействуя с ONOO?, фермент окисляется до селеновой кислоты и затем восстанавливается до исходного состояния двумя молекулами глутатиона; скорость реакции составляет 8 ? 106M-1c-1[25].
Также селеновые ГПО играют важную роль в регуляции биосинтеза эйкозаноидов, контролируя содержание органических перекисей и поддерживая так называемый «перекисный тонус». Так, циклооксигеназа, переводящаяарахидоновую кислоту в циклоэндогидроперекисьPGH2, активируется гидроперекисью, высокое содержание которой приводит к самоинактивации фермента. Обычная физиологическая концентрация гидроперекисей в клетках млекопитающих составляет около 10-10 М, и её повышение до 10-6 М вызывает активацию циклооксигеназы. Предпологается, что липоксигеназа, отвечающая за синтез лейкотриенов, простациклиновые и тромбоксановыесинтетазы, также являются объектами перекисной регуляции [26]. С этой точки зрения становится ясно, насколько важна функция ГПО в патогенезе воспалительных процессов.
- Введение
- Активированные кислородные метаболиты в биологических системах. Антиоксиданты и ингибиторы радикальных и окислительных процессов. Перекисное окисление липидов
- Активированные кислородные метаболиты. Общие сведения
- Классификация АКМ
- Биологическая роль АКМ
- Антиоксиданты
- Витамин С
- Каротиноиды
- Витамин Е
- Селен
- Глутатионпероксидаза
- Перекисное окисление липидов
- Материалы и методы
- Общие сведения
- Выделение микросом печени крысы
- Исследование индукции ПОЛ
- Определение концентрации белка по методу Бредфорда
- Результаты и обсуждение
- Выводы
- Неспецифические метаболиты.
- Патогенетические механизмы повреждений клеток, обусловленных возобновлением кровообращения после ишемии
- 6.2. Области применения активированных углей
- 3.11.14. Апоптоз
- 5.1. Местные механизмы регуляции кровообращения.
- Глава 1. Общая характеристика и классификация свободных радикалов. Активированные кислородные метаболиты.
- 2.4.2 Модельный пример 2 – биологическая очистка сточных вод (процесс активированного отстоя)
- Комплекс с5b678
- Контрольные вопросы