3. В чем сущность метода иммобилизации ферментов путем включения в структуру геля. Гелеобразующие вещества органической и неорганической природы и примеры их использования в биотехнологии
Для иммобилизации ферментов в геле существует два основных способа. При одном из них фермент помещают в водный раствор мономера, а затем проводят полимеризацию, в результате чего образуется полимерный гель с включенными в него молекулами фермента. В реакционную смесь часто добавляют также бифункциональные (содержащие в молекуле две двойные связи) сшивающие агенты, которые придают образующемуся полимеру структуру трехмерной сетки.
В другом случае фермент вносят в раствор готового полимера, который затем каким-либо образом переводят в гелеобразное состояние.
Способ иммобилизации ферментов путем включения в полимерный гель позволяет создавать препараты любой геометрической конфигурации, обеспечивая при этом равномерное распределение биокатализатора в объеме носителя. Метод универсален, применим для иммобилизации практически любых ферментов, полиферментных систем, клеточных фрагментов и клеток. Фермент, включенный в гель, стабилен, надежно защищен от инактивации вследствие бактериального заражения, так как крупные клетки бактерий не могут проникнуть в мелкопористую полимерную матрицу. В то же время, эта матрица может создавать значительные препятствия для диффузии субстрата к ферменту, снижая каталитическую эффективность иммобилизованного препарата, поэтому для высокомолекулярных субстратов данный метод иммобилизации не применим вообще.
Для первого варианта используют гели полиакриламида, поливинилового спирта, поливинилпирролидона, силикагеля, для второго - гели крахмала, агар-агара, каррагинана, агарозы, фосфата кальция.
Иммобилизация ферментов в гелях обеспечивает равномерное распределение энзима в объеме носителя. Большинство гелевых матриц обладает высокой механической, химической, тепловой и биологической стойкостью и обеспечивает возможность многократного использования фермента, включенного в его структуру. Однако метод непригоден для иммобилизации ферментов, действующих на водонерастворимые субстраты.
- 1. Назовите биообъекты растительного происхождения используемые в культуре ткани для получения лекарственных вещества (не менее 8). Примеры использования (донор, донатор)
- 2. Ферменты используемые в генетической инженерии (рестриктазы, лигазы) и механизм их действия
- 3. В чем сущность метода иммобилизации ферментов путем включения в структуру геля. Гелеобразующие вещества органической и неорганической природы и примеры их использования в биотехнологии
- 4. Биотехнологический процесс как заключительный этап производства целевых продуктов в том числе и лекарственных веществ (примеры)
- 5. Критерии подбора ферментаторов при реализации конкретных целей биотехнологического процесса. Нарисовать схему ферментатора (биореактора) и пример его использования
- 6. Методы извлечения целевых продуктов, накапливающихся внутри клеток продуцента
- 7. Биотехнология аминокислот (глютаминовая кислота, лизин, треонин и др.). Преимущества микробиологического синтеза перед другими способами получения
- 8. Биологическая роль антибиотиков как вторичных метаболитов. Причины позднего накопления антибиотиков в ферментационной среде по сравнению с накоплением биомассы
- 9. Применение растительных клеток для трансформации лекарственных веществ. Преимущества получения целевых продуктов с использованием культур клеток растении по сравнению с традиционными. Экономические аспекты биоиндустрии культуры тканей растений
- Список использованной литературы
- Стадии биотехнологического производства
- Тема 1. Асептика в биотехнологических процессах.
- 4.1.1. Термодинамика биотехнологических и микробиологических процессов
- Глава 5. Общая характеристика биотехнологического процесса
- 65. Основные этапы биотехнологического производства.
- 12. Стадии биотехнологического процесса
- 27.Биотехнологические процессы в пищевой промышленности.
- 2.5 Преимущества биотехнологических процессов