logo search
Sadohin

8.2. Первый уровень химического знания. Учение о составе вещества

Первый по-настоящему действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие структуры — атомы, или, как он их называл, minima naturalia. Эти частицы могли связываться друг с другом, образуя более крупные соединения — кластеры, по терминологии Бойля. Связь частиц в кластерах была достаточно прочной, и поэтому кластеры сами были невидимыми глазу кирпичиками для построения реальных физических тел. В зависимости от объема и формы кластеров, от того, находились ли они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».

В период с середины XV11 в. до первой половины XIX в. учение о составе вещества представляло собой всю тогдашнюю химию. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с использованием вновь открытых химических элементов.

Концепция химического элемента

Концепция химического элемента появилась в химии как результат стремления человека обнаружить первоэлемент природы. Корни решения данной проблемы уходят в Древнюю Грецию, где возникли учения о первоэлементах природы. Там же возникла и атомистическая концепция природы, возрожденная в Новое время

186

в химии Р. Бойлем. Именно он положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое.

Но еще целый век после этого химики делали ошибки в выделении химических элементов. Дело в том, что, сформулировав понятие химического элемента, химики еще не знали ни одного из них. Стремясь получить элементы в чистом виде, они пользовались считавшимся тогда универсальным методом прокаливания, и окалину принимали за чистый элемент. Так что известные тогда металлы — железо, медь, свинец — принимали за сложные тела, состоявшие из соответствующего элемента и флогистона. Однако именно флогистонная теория, ложная по сути, оказалась двигателем многих исследований, приведших в итоге к истинным выводам.

Этот вывод был сделан Д.И. Менделеевым, доказавшим, что свойства химического элемента зависят от места данного атома в периодической системе. Сам Менделеев определял это место по атомной массе, но в XX в. было выяснено, что порядковый номер элемента зависит не от атомной массы, а от заряда атомного ядра и количества электронов. В настоящее время известно, что атом представляет собой сложную квантово-механическую систему, состоящую из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Выяснены особенности строения электронных орбиталей атомов всех элементов и особая роль внешнего электронного уровня атома, от количества электронов в котором зависит реакционная способность элемента — химическая активность вещества, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Наиболее активными с химической точки зрения являются элементы, имеющие минимальную атомную массу и 6—7 электронов на внешнем электронном уровне (фтор, хлор, кислород). Это связано с тем, что они стремятся достроить свою электронную оболочку путем присоединения недостающего числа электронов. Также большой реакционной способностью отличаются металлы, обладающие большой атомной массой и имеющие 1—2 электрона на внешнем электронном уровне (барий, цезий), стремящиеся отдать их для его достройки.

Современный окружающий человека мир заполнен многочисленными соединениями, образованными элементами периодической системы Менделеева. Во времена самого Менделеева было известно всего 62 химических элемента. В 30-е гг. XX в. таблица Менделеева включала 88 элементов, а всего в ней было 92 клетки (элемент под номером 92 — это уран). Сегодня науке известно 110 химических элементов (элемент 109 получил название мейтнерий, 110-й элемент еще не имеет официального названия), и химиков продолжает волновать вопрос, сколько всего элементов в таблице Менделеева.

187

Предполагается, что на первоначальной стадии развития Земли существовали трансурановые элементы с порядковыми номерами до 106-го. Такие элементы имели небольшую продолжительность жизни по сравнению с возрастом Земли и поэтому полностью распались, не сохранившись до наших дней. Самым долгоживущим элементом из данной группы оказался плутоний-244 с периодом полураспада 82,2 млн. лет. В 1971 г. из минерала бастнезита удалось выделить некоторое количество атомов этого элемента. Но в основном все трансурановые элементы были получены искусственным путем. В 1940 г. был синтезирован нептуний, после этого были зарегистрированы еще 15 трансурановых элементов с номерами до 107-го.

Трансурановые элементы с атомными номерами до 100-го можно получить в ядерном реакторе путем бомбардировки ядер изотопа урана-238 нейтронами. Более тяжелые элементы получают только в ускорителях в очень незначительных количествах. Для этого уран бомбардируют ионами ксенона, гадолиния, самария, гафния или самого урана. В результате этого образуются очень тяжелые промежуточные ядра. Но такие реакции стали возможны лишь с 1971 г., когда появились новые мощные ускорители, способные разогнать тяжелые ионы до высоких энергий.

Современная теория позволяет с большой вероятностью рассчитать стабильность сверхтяжелых элементов и предсказать их физические и химические свойства. Поэтому химики предполагают, что элементы с порядковыми номерами между 114-м и 164-м должны обладать неожиданно высокой стабильностью. Считается, что в районе этих порядковых номеров в периодической системе должен существовать так называемый островок стабильности, на котором возможно получение изотопов с периодом полураспада 108 лет. Верхняя граница стабильности должна приближаться к номеру 174. Если эти элементы будут получены, то их можно будет использовать в промышленном производстве и энергетике. Но для их синтеза нужны новые экспериментальные методы и технические средства.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра.

Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. Фредериком Содди, известным английским радиохимиком, лауреатом Нобелевской премии. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.

188

С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т.д. В настоящее время выпускается огромное количество различных приборов, содержащих радиоактивные изотопы. Они служат для определения плотности, однородности, гигроскопичности и других характеристик материалов.

Довольно широко используется метод меченых атомов, который позволяет проследить за перемещением химических соединений при физических, химических и биологических процессах Для этого в исследуемое вещество вводятся радиоактивные изотопы определенных элементов и ведется наблюдение за их продвижением. Так можно проследить за превращением веществ как в доменной печи, так и в живом организме. Например, с помощью изотопа кислорода-18 стало возможным выяснение механизма дыхания живых организмов.

В медицине с помощью радиоактивных изотопов лечат многие заболевания, в том числе онкологические. Кроме того, батареи небольшой мощности на изотопах плутония-238 и кюрия-224 применяются в приборах для стабилизации ритма сердца. В химической промышленности изотопы используются для облучения полиэтилена и других полимеров с целью повышения их термостойкости и прочности.

Таким образом, правильное использование радиоактивных изотопов приносит несомненную пользу человечеству. К сожалению, в последнее время об этом стали забывать, все меньше доверяя радиации, которая ассоциируется с атомной бомбой или Чернобыльской катастрофой. Забыты те времена, когда радиоактивность и рентгеновское излучение были только что открыты и их посчитали панацеей в медицине. Мало кто помнит о том, что в начале XX в. в свободной продаже были радиевые подушки, радиоактивная зубная паста и косметика, считавшиеся полезными для здоровья. Уже в 20—30-е гг. XX в. появились первые свидетельства того, что радиоактивное излучение неблагоприятно влияет на живые организмы, вызывая генетические изменения — мутации, а также различные виды онкологических заболеваний. Последствия атомной бомбардировки Хиросимы и Нагасаки подтвердили эти выводы. Поэтому современная медицина двойственно относится к радиации. С одной стороны, говорится, что только в малых дозах радиация безопасна (в природе существует естественный радиоактивный фон), с другой — продолжают использовать рентгеновское обследование и лучевую терапию в лечебных целях.

Концепция химических соединений

Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что — к простым телам или

189

смесям. Еще в начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом — прочным притяжением составных частей (атомов) и тем самым отличается от смесей. Также Пруст установил, что всякое чистое вещество независимо от его происхождения и способа получения имеет один и тот же состав.

Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно представить как простую формулу, а эквивалентные составные части молекулы — атомы, обозначавшиеся соответствующими символами, могли замещаться на другие атомы.

После этого долго считали, что состав химического соединения может быть только постоянным. Но дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими постоянный состав, существуют еще и соединения переменного состава, или бертолли-ды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов. Существуют кова-лентные полярные, ковалентные неполярные ионные, водородные и металлические химические связи, отличающиеся характером физического взаимодействия частиц между собой.

Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой — молекулу, комплекс, монокристалл или иной агрегат.

Проблема создания новых материалов

На сегодняшний день науке известно 110 химических элементов, но по удельному весу они распределены крайне неравномерно. Так, 98,6% массы физически доступного слоя Земли составляют всего восемь химических элементов: кислород (47%), кремний (27,5), алюминий (8,8), железо (4,6), кальций (3,6), натрий (2,6), калий (2,5), магний (2,1). Однако все эти элементы используются непропорционально. Например, железа содержится в Земле в два

190

раза меньше, чем алюминия. Однако для более 95% всех металлических изделий изготавливаются из железорудного сырья. Поэтому для современной химии важнейшей задачей является рациональное использование имеющихся ресурсов. Для этого нужно использовать химические элементы в производстве в соответствии с их реальными ресурсами в природе, заменить дефицитное сырье имеющимся в изобилии, утилизировать отходы и использовать вторичное сырье.

Сегодня на смену старым материалам приходят новые. Это связано с тем, что новые материалы более эффективны, чем старые. Кроме того, нужно искать заменители традиционным видам сырья. Поэтому исследования ученых направлены на изучение и использование силикатов, которые составляют 97% массы земной коры. Именно они должны стать основным сырьем для производства всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с металлами.

Внимание химиков к металлам и керамике не случайно, именно они составляют на 90% современную материально-техническую базу производства. В мире ежегодно выплавляется около 600 млн. т металла — более 150 кг на каждого жителя планеты. Примерно столько же производится и керамики вместе с кирпичом. Но металлов не так много, кроме того, их изготовление обходится в сотни и тысячи раз дороже, чем получение керамики. Разница в их стоимости до недавнего времени никого особенно не волновала, так как каждый материал имел свое строго определенное назначение. Однако благодаря развитию химии открывается все больше возможностей для замены металла керамикой. Очевидное преимущество керамики состоит в том, что ее плотность на 40% ниже, чем плотность металлов. Это позволяет соответственно снизить массу изготовляемых из керамики деталей. А используя в производстве керамики такие химические элементы, как цирконий, титан, бор, германий, хром, молибден, вольфрам и др., можно получать керамические изделия с заранее заданными свойствами.

Так, стекло долгое время использовалось лишь в качестве украшений, из него изготавливались бусины. Затем из стекла стали изготавливать посуду, оконные стекла и т.д. К XX в. научились уже выплавлять стекло более 800 разновидностей, из него делали около 43 тысяч различных изделий. Но стекло обладало серьезным недостатком — оно было хрупким, изделия из него легко бились и ломались. Поэтому важнейшей задачей ученых и инженеров в XX в. стало получение небьющегося стекла. Это стало возможным после того, как в 20—30-е гг. XX в. была выяснена его структура. После этого появилась возможность делать стекло не только небьющимся, но и жаропрочным, способным выдерживать перепады температур от 1000°С до комнатной температуры. Кроме того, было получено стек-

191

ло, которое можно обрабатывать, как обычный металл. А композиционные материалы, изготовленные из химически обработанного стекла со слоями пластика, обладают прочностью металла (бронестекло). Стекла с напыленным на них тонким слоем металла летом задерживают лучи палящего солнца, а зимой сохраняют тепло.

Производится огромное количество стекловолокнистых материалов, которые используются для армирования, отделки, склеивания, декорирования, изолирования и т.п. Кроме того, стекловолокно используется в качестве светопровода, по которому можно передать большое количество информации.

Если традиционное стекло является хорошим изолятором, то в последнее время появилось стекло с полупроводниковыми свойствами, которое изготавливается методом тонкопленочной технологии. Таким образом, область применения стекла постоянно расширяется, традиционный материал приобрел новые свойства.

Меняют в наши дни свои свойства и силикатные и керамические материалы, также давно известные человеку. 90% всех производимых в мире строительных материалов приходится на силикаты. К ним относятся давно известные человеку (со времен этрусков) бетон и цемент, а также современные материалы — высокопрочный полимер-бетон; огнеупорный бетон, выдерживающий температуру до 1800°С; легкий бетон, в который можно забивать гвозди; бетон с высокими теплоизолирующими свойствами; бетон с малым влагопоглощением.

Традиционная керамика — это фаянс, фарфор, каменная керамика, которую получают из смеси глины, кварца и полевого шпата, обработанной при высокой температуре. Из керамики изготавливаются кирпичи разных видов, изоляторы, а также различные виды посуды. В последнее время была получена керамика высокой термической и коррозионной стойкости и прочности. Некоторые керамические материалы начинают разрушаться только при температуре выше 1600°С. В сосудах из такой керамики можно плавить металлы, из нее можно делать камеры сгорания для космических ракет и детали для металлорежущих инструментов. А в начале 90-х гг. XX в. был синтезирован керамический материал на основе оксидов меди, обладающий свойством высокотемпературной сверхпроводимости — он переходит в сверхпроводящее состояние при 170 К.

В XX в. наряду с традиционными материалами появились новые — полимерные и синтетические. Они находят все большее применение, потеснив традиционные материалы.

На основе природных и синтетических полимеров получают пластмассы — материалы, способные приобретать заданную форму при нагревании под давлением и устойчиво сохранять ее после охлаждения. Области применения полимеров весьма разнообразны — от текстильной промышленности до микроэлектроники. Главное достоинство этих материалов — их дешевизна и легкость в переработке.

192

Кроме того, созданы пластмассы, способные заменить металлы, термостойкие пластмассы для авиационной и ракетной техники. Все больше пластмасс используется в строительстве — пластмассовые рамы, облицовочные материалы, кровля и т.д. Существуют проекты создания полностью пластмассовых автомобилей, т.е. доля пластмасс по сравнению с металлами становится все больше.

Настоящая революция произошла в текстильной промышленности, в которой увеличивается доля искусственных тканей и синтетических материалов. Более 50% современных волокон производится из материалов, синтезированных за последние полвека, — вискозы, полиамида, полиакрилонитрила и полиэфиров. Разработаны технологии химической обработки и отделки тканей из натуральных волокон — обработка шерсти для обеспечения устойчивости против моли, уменьшение усадки материала и придание ему несминаемости, обеспечение антистатических, антимикробных и гря-зеотталкивающих свойств.

В настоящее время химики работают над созданием нового поколения искусственных волокон со свойствами, максимально приближенными к естественным материалам. Уже созданы ткани, обладающие высокой степенью защиты от солнечных лучей. Производятся ткани, обладающие лучшими свойствами льна, хлопка, шерсти. Появились микроволокна с диаметром в десять раз тоньше волоса. Они позволяют ткать материалы мягкие, защищающие от сырости, но пропускающие при этом воздух к телу. Пустотелые волокна, также разработанные химиками, лучше противостоят холоду. Есть волокна с триклозаном — веществом, останавливающим размножение микробов. Одной из разновидностей синтетических тканей является кевлар — материал, который в пять раз прочнее на разрыв, чем сталь. Он идет на изготовление пуленепробиваемых жилетов, курток и т.д. Создание космических скафандров — также заслуга химиков. В ткань скафандра встроены миллионы микроскопических капсул с парафином, которые при нагревании плавятся и отбирают тепло у веществ, находящихся рядом, а при охлаждении отвердевают и выделяют тепло, согревающее космонавта.

Синтез уникальных материалов заставляет по-новому исследовать все химические элементы и накапливать данные для производства новых материалов.