1. Зворотна транскриптаза. Ферментативний синтез генів.
Великі за розмірами гени одержують методом ферментативного синтезу. Суть його полягає в тому, що з клітин виділяють певний тип іРНК, яка є комплементарною копією гена. На цих копіях за допомогою фермента — зворотної транскриптази — синтезують відповідний ген. Цей фермент здійснює синтез ДНК у напрямі 5' → 3', який приєднує по одному нуклеотиду шляхом комплементарного спарювання основ з іРНК-матрицею. Продукт реакції становить собою гібридну молекулу, яка складається з РНК-матриці, що з'єднана з комплементарним ланцюгом ДНК. Одержаний комплекс (РНК — ДНК) руйнують обробленням лугом (на ДНК луг не впливає). Внаслідок цього утворюється одноланцюгова ДНК, комплементарна іРНК (її позначають кДНК). За допомогою ДНК-полімерази перетворюють одноланцюгову кДНК у дволанцюгову шляхом добудови комплементарного ланцюга. Завдяки зворотній транскриптазі був знайдений шлях для синтезу будь-якого з існуючих генів, незалежно від їх складності. За відкриття цього фермента Д. Балтімор і X. Тьомін були удостоєні в 1975 р. Нобелівської премії.
Шляхом ферментативного синтезу були створені гени глобіну кролика, миші, голуба, качки та людини. Приклади штучно синтезованих генів ссавців, які проявили свою біологічну активність у клітинах кишкової палички, наведені в табл. 1.
Таблиця 1. Приклади генів ссавців, виражених в Е. соlі
Ген | Метод створення |
1. Редуктази дигідрофолату миші | Зворотна транскрипція |
2. Інсуліну щура | Зворотна транскрипція |
3. Яєчного альбуміну | Зворотна транскрипція |
4. Соматостатину людини | Хімічний синтез |
5. Інсуліну людини | Зворотна транскрипція |
6. Гормону росту людини | Хімічний синтез і зворотна транскрипція |
7. Інтерферону людини | Зворотна транскрипція |
8. Урокінази людини | Зворотна транскрипція |
9. α- 1 тимозину людини | Зворотна транскрипція |
- Лекція №1 (2 год) План:
- 1. Механізм рекомбінації генів в еукаріотів. Еволюційне значення процесу.
- 2. Рекомбінація генетичного матеріалу у прокаріотів:
- 3. Пізнання трансформації як пролог генної інженерії.
- 4. Універсальність молекулярних носіїв спадкової інформації.
- 1. Поняття генної інженерії та її виникнення. Завдання генної інженерії.
- 3. Біоінженерія. Генна, генетична та клітинна інженерія.
- 5. Хімічний синтез генів (метод Корана) та його недоліки.
- Лекція №3 (2 год) План:
- 1. Зворотна транскриптаза. Ферментативний синтез генів.
- 3. Ферменти рестрикції-рестриктази. Особливості їх дії на днк. Нарізання генетичного матеріалу (одержання блоків генів).
- 4. Лігази та дезоксинуклеотидилтрансфераза.
- 5. Інші ферменти, що мають безпосереднє відношення до генної інженерії.
- Лекція №4 (4 год)
- 1. Поняття вектора і його роль в генетичній інженерії (трансгенозисі).
- 2. Плазміди як основні вектори, що використовуються в генній інженерії.
- 4. Ті-плазміда Agrobacterium tumefaciens та її т-днк.
- 5. Інші вектори (помірні фаги та косміди).
- Лекція №5,6 (4 год) План:
- 2. Культура ізольованих клітин і тканин. Голі протопласти як об’єкти для перенесення генів.
- 3. Тотіпотентність рослинних клітин. Тотіпотентність тваринних клітин раннього зародку.
- 5. Гібридоми
- 6. Роль ядра в спадковості. Трансплантація ядер. Клонування.
- Лекція №7 План:
- 1. Генетично модифіковані організми (гмо) і генетично модифіковані харчові продукти. Ставлення до них в сша і Європі.
- 3. Сша – лідер в галузі генної інженерії та практичного використання гмо.
- 4. Проблема потенційної небезпеки гмо для людини та екосистем.
- 5. Досягнення генної інженерії у мікроорганізмів, рослин і тварин. Перспективи генної інженерії та її значення у вирішенні проблеми харчових ресурсів.
- 8. Поняття стовбурових клітин та їх значення в життєдіяльності організму.
- 9. Стовбурові клітини та їх плюропотентність. Донор-рекордист, занесений до книги рекордів Гіннесса (480 л. Крові).
- 10.Стовбурові клітини та їх використання в медицині
- Лекція №8 План: