logo search
к модулям / Биология в 2кн_кн2_Ярыгин Васильева и др_Учебник_2003 -334с

24.2. Структура и функции биосферы

Биосфера представляет собой многоуровневую систему, включающую подсистемы различной степени сложности. Границы биосферы определяются областью распространения организмов в атмосфере, гидросфере и литосфере (рис. 24.1). Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой радиации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину Мирового океана, что подтверждает обнаружение живых организмов и органических отложений до глубины 10—11 км. В литосфере область распространения жизни во многом определяет уровень проникновения воды в жидком состоянии — живые организмы обнаружены до глубины примерно 7,5 км.

Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и особенно биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических процессов имеют кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосферы существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Исторически развитие атмосферы связано с геохимическими процессами, а также жизнедеятельностью организмов. Так, азот, углекислый газ, пары воды образовались в процессе эволюции планеты благодаря (в значительной мере) вулканической активности, а кислород — в результате фотосинтеза.

Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в Мировом океане, который занимает примерно 70% поверхности Земного шара. Общая масса океанических вод составляет свыше 1300 млн. км3. Около 24 млн. км3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км3 (из них половина соленые), а рек—0,002 млн. км3.

Количество воды в телах живых организмов достигает примерно 0,001 млн. км3. Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация углекислого газа также варьирует, а общее количество его в океане в 60 раз превышает его содержание в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод.

Рис. 24.1. Область распространения организмов в биосфере:

1—уровень озонового слоя, задерживающего жесткое ультрафиолетовое излучение, 2—граница снегов, 3—почва, 4— животные, обитающие в пещерах, 5—бактерии в нефтяных скважинах

Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В.И. Вернадского, биокосным веществом, представлены минеральными веществами, образующимися при разрушении горных пород, и органическими веществами — продуктами жизнедеятельности организмов.

Живые организмы (живое вещество). В настоящее время описано около 300 тыс. видов растений и более 1,5 млн. видов животных. Из этого количества 93% представлено сухопутными, а 7% — водными видами животных. Суммарная биомасса организмов сухопутных видов образована на 99,2% зелеными растениями (2,4 • 1012 т) и на 0,8% животными и микроорганизмами (0,2 • 1011 т). В океане, напротив, на долю растений приходится 6,3% (0,2 • 109 т), а на долю животных и микроорганизмов — 93,7% (0,3 • 1010 т) совокупной биомассы. Несмотря на то что океан покрывает немногим более 70% поверхности планеты, в нем содержится лишь 0,13% биомассы всех живых существ, обитающих на Земле.

Расчеты показывают, что растения составляют около 21% всех учтенных видов. Однако на их долю приходится более 99% биомассы, тогда как вклад животных в биомассу планеты (79% видов) составляет менее 1%. Среди животных 96% видов приходится на долю беспозвоночных и только 4% на долю позвоночных, среди которых млекопитающие составляют примерно 10%.

Приведенные соотношения иллюстрируют фундаментальную закономерность организации биосферы: в количественном отношении преобладают формы, достигшие в процессе эволюции относительно низких степеней морфофизиологического прогресса.

Живое вещество по массе составляет 0,01—0,02% от косного вещества биосферы, однако играет ведущую роль в биогеохимических процессах благодаря совершающемуся в живых организмах обмену веществ. Так как субстраты и энергию, используемые в обмене веществ, организмы черпают из окружающей среды, они преобразуют ее уже тем, что в процессе своего существования используют ее компоненты.

Ежегодная продукция живого вещества в биосфере составляет 232,5 млрд. т сухого органического вещества. За это же время в масштабе планеты в процессе фотосинтеза синтезируется 46 млрд. тонн органических углеродсодержащих веществ. Для этого требуется, чтобы 170 • 109 т С02 прореагировало с 68 • 109 т Н20.

Таким образом, в результате фотосинтеза ежегодно образуется 115х х 109 т сухого органического вещества и 123 • 109 т 02. В течение года в процесс фотосинтеза вовлекаются также 6 • 109 т азота, 2 • 109 т фосфора и другие элементы, например калий, кальций, сера, железо. Приведенные цифры показывают, что живое вещество является наиболее активным компонентом биосферы. Оно производит гигантскую геохимическую работу, способствуя преобразованию других оболочек Земли в геологическом масштабе времени.

Биотический круговорот. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами — потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.

Важная роль в глобальном круговороте веществ принадлежит циркуляции воды между океаном, атмосферой и верхними слоями литосферы. Вода испаряется и воздушными течениями переносится на многие километры. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря. Подсчитано, что с поверхности Земли за 1 мин испаряется около 1 млрд. т Н20 (на образование 1 г водяного пара необходимо 2,248 кДж). Энергия, затрачиваемая на испарение воды, возвращается в атмосферу (рис. 24.2). Циркуляция воды между Мировым океаном и сушей представляет собой важнейшее звено в поддержании жизни на Земле и основное условие взаимодействия растений и животных с неживой природой.

Рис. 24.2. Круговорот воды в биосфере

Под влиянием этого процесса происходит постепенное разрушение литосферы, перенос ее компонентов в глубины морей и океанов.

На создание органического вещества расходуется всего 0,1—0,2% солнечной энергии, достигающей поверхности планеты. Благодаря этой энергии осуществляется значительный объем работы по перемещению химических элементов.

В качестве примеров биотического круговорота рассмотрим круговороты углерода и азота в биосфере (рис. 24.3; 24.4). Круговорот углерода начинается с фиксации атмосферного диоксида углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используют сами растения для получения энергии, часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы (рис. 24.4). Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль в этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу.

Показателем масштаба биотического круговорота служат темпы оборота углекислого газа, кислорода и воды. Весь кислород атмосферы проходит через организмы примерно за 2 тыс. лет, углекислый газ — за 300 лет, а вода полностью разлагается и восстанавливается в биотическом круговороте за 2 млн. лет (рис. 24.5).

Рис. 24.3. Круговорот углерода в биосфере

Рис. 24.4. Круговорот азота в биосфере

Благодаря биотическому круговороту биосфере присущи определенные геохимические функции: газовая биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная аккумуляция в своих телах живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная превращение веществ, содержащих атомы с переменной валентностью (например, Fе, Mn); биохимическая процессы протекающие в живых организмах.

Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте,— продуцентов (автотрофы), потребителей (гетеротрофы) и деструкторов (минерализующие органические остатки) — взаимоуравновешиваются. То, что в биосфере поддерживается постоянство ее главных характеристик (гомеостаз), не исключает способности ее к эволюции.

Рис. 24.5. Темпы циркуляции веществ в биосфере