logo search
Активированные кислородные метаболиты в биологических системах

Биологическая роль АКМ

Общая особенность АКМ - высокая реакционная способность и малые значения времён жизни в биологических субстратах, что делает их эффективным инструментом локального действия [9]. Так, действие OH-радикала (радиус диффузии 23 A) [10]ограничено размером средней ограниченной молекулы (например, величина молекулы пепсина - молекулярная масса 35 кДа - составляет 37 ? 74 A). Анион-радикал O2? и синглетный кислород обладают большим радиусом действия, сравнимым с размером клетки, однако уже на клеточном уровне их эффект строго локализован наличием высокоэффективного ферментативного антиоксиданта - супероксиддисмутаза (СОД), а также других антиоксидантов - таких, как витамин E, который инактивирует 1O2 посредством физического взаимодействия на расстоянии ~ 50 A [11]. Сфера влияния радикалов NO? распространяется уже на определённые клеточные структуры, такие как мышечные клетки сосудов, что вызывает их релаксацию, при этом оксид азота принципиально не отличается от гормональных мессенджеров и имеет свой «рецептор» - растворимую гуанилатциклазу. Наибольшим дальнодействием, проявляющимся на тканевом и организменном уровнях, обладают продукты радикальных реакций; так, процессы ПОЛ приводят к образованию альдегидов, эпоксидов, липидных перекисей, которые ингибируют синтез ДНК и деление клеток и в то же время индуцируют развитие опухоли. По-видимому, ПОЛ и его продукты, выступая в роли «первичного медиатора» стресса или «SOS-ответа», представляют один из наиболее ранних регуляторных механизмов, который в процессе эволюции трансформировался в ферментативную эйкозаноидную регуляцию. Окисленные фосфолипиды по свойствам сходны с фактором активации тромбоцитов и могут имитировать действие цикотина на клетки непосредственно через специфический для него рецептор.

Высокая реакционная способность АКМ делает их чрезвычайно токсичными для биологических систем на всех уровнях - от молекулярно-клеточного до организменного. В конце 40-х годов толчком для широкого изучения токсических эффектов АКМ послужили исследования действия радиации на живые организмы. В настоящее время можно утверждать, что АКМ занимают ведущее место в патогенезе радиационного поражения; деструкции тканей, вызванной развитием воспалительной реакции, и связанного с хроническим воспалением опухолеобразования; постишемических, реперфузионных и гипероксических повреждений; а также целого ряда бронхолёгочных, сердечнососудистых и других заболеваний. Вместе с тем механизм патофизиологического действия АКМ во многих случаях не ясен, так как утверждение о патофизиологической роли АКМ обычно строится на двух косвенных аргументах: а) интенсивность продукции АКМ коррелируют с развитием патологического процесса; б) ингибиторы АКМ обладают защитным действием.

Открытие явления дыхательного «взрыва» в фагоцитах послужило началом широкого изучения микробицидного действия АКМ, их роли в защите организма. При этом ярко выявилось, что генетически обусловленные нарушения механизмов генерации АКМ (больные с хронических гранулематозом или дефицитом миелопероксидазы) или их ингибирование лекарственным препаратами приводит к снижению неспецифического иммунитета и является причиной либо гибели организма от инфекций, либо развития хронических патологий.

В последние годы выявлен широкий спектр физиологических эффектов АКМ, к которым прежде всего относятся регуляция клеточной пролиферации и тонуса сосудов, индукция транскрипции определённых генов [12]. Показано функционирование АКМ в качестве вторичных внутриклеточных мессенджеров. Так, АКМ непосредственно участвуют в активации онкогенов c-focи с-myc, а также гена c-jun, кодирующего главную форму фактора транскрипции AP-1, в ответ на ионизирующую радиацию [13].O2?и H2O2 активируют фактор транскрипции NF-кB, который вызывает экспрессию генов, кодирующих ряд цитокинов и вирусов, в том числе ВИЧ, а NO?подавляет активацию NF-кB, индуцируя экспрессию ингибитора фактора транскрипции IкBби стабилизируя его. Стимуляция НАДФН-оксидазы нейтрофилов сопровождается активацией тирозинкиназ, при этом повышение накопления фосфотирозина обусловлено не только активацией АКМ фосфорилирования тирозина, но и ингибированием дефосфорилирования. В индукции синтеза белков теплового шока, повышающих резистентность клеток к высоким температурам, радиации, токсическому действию ионов тяжёлых металлов и лекарственных препаратов, основная роль отводится перекиси водорода.

Выделяемая из облучённых фоторецепторов H2O2 увеличивают длину и количество микроворсинок клеток пигментированного эпителия, что способствует более тесному контакту этих двух типов клеток и реализации антиоксидантных функций эпителия. NO?и CO? связываются с гемовой частью гуанилатцитклазы и обратимо изменяют синтез цГМФ, являясь важным компонентом внутри- и внеклеточной коммуникации. NO? участвует в посттранскрипционном контроле метаболизма железа [14].

Таким образом, образование АКМ в организме нельзя рассматривать, как существующий, но не обязательный элемент процесса жизнедеятельности.

Окислительные процессы с участием АКМ является неотъемлемым звеном существования высших форм живых организмов, негэнтропийное состояние которых поддерживается посредством снижения электронной упорядоченности молекулярного кислорода в результате его восстановления. Однако многие вопросы регуляторной функции АКМ, их взаимодействия с антиоксидантами, физиологической и патофизиологической роли сегодня всё ещё остаются спорными [7].