Строение ферментов
Метаболит - вещество, которое участвует в метаболических процессах.
Субстрат – вещество, которое вступает в химическую реакцию.
Продукт – вещество, которое образуется в ходе химической реакции.
Ферменты характеризуются наличием специфических центров катализа.
Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр.
Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.
У группы регуляторных ферментов есть аллостерические центры, которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.
Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).
Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом, а каталитически активную форму сложного белка – холоферментом. Таким образом: холофермент = апофермент + кофермент.
В качестве коферментов функционируют:
гемы,
нуклеотиды,
коэнзим Q,
ФАФС,
SAM,
Глутатион
производные водорастворимых витаминов:
-
Витамины
Коферменты
РР (никотиновая кислота)
НАД+, НАДФ+
В2 (рибофлавин)
ФАД, ФМН
В6 (пиридоксаль)
Пиридоксальфосфат
В1 (тиамин)
Тиаминпирофосфат
В12
Кобаламины
Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой. Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат. Это, например, НАД+, НАДФ+. Косубстрат присоединяется к ферменту в момент реакции.
Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg2+.
Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.
В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:
НАДН2 НАД+
пируват ←ЛДГ→ лактат
ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ1 (НННН), ЛДГ2 (НННМ), ЛДГ3 (ННММ), ЛДГ4 (НМММ), ЛДГ5 (ММММ).
Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.
Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ1, ЛДГ2 (миокард, надпочечники), где анаэробный обмен - ЛДГ4, ЛДГ5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ4, ЛДГ5. После рождения в некоторых тканях происходит увеличение содержания ЛДГ1, ЛДГ2.
Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.
Локализация и компартментализация ферментов в клетке и тканях.
Ферменты по локализации делят на 3 группы:
I – общие ферменты (универсальные)
II - органоспецифические
III - органеллоспецифические
Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.
Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.
Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).
Органеллоспецифические ферменты. Разным органеллам присущ специфический набор ферментов, который определяет их функции.
Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:
Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза
Цитоплазма: ферменты гликолиза, пентозного цикла.
ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).
Рибосомы: ферменты обеспечивающие синтез белка.
Лизосомы: содержат гидролитические ферменты, КФ (кислая фосфатаза).
Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.
Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК ( РНК-полимераза, НАД-синтетаза).
Ядрышко: ДНК-зависимая-РНК-полимераза
В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).
Среди ферментов выделяется немногочисленная группа регуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.
Строгая локализация всех ферментов закодирована в генах.
Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.
Классификация и номенклатура ферментов
Номенклатура – названия индивидуальных соединений, их групп, классов, а также правила составления этих названий. Номенклатура ферментов бывает тривиальной (короткое рабочее название) и систематической. По систематической номенклатуре, принята в 1961г Международным союзом биохимии, можно точно идентифицировать фермент и его катализируемую реакцию.
Классификация – разделение чего либо по выбранным признакам.
Классификация ферментов основана на типе катализируемой химической реакции;
На основании 6 типов химических реакций ферменты, которые их катализируют, подразделяют на 6 классов, в каждом из которых несколько подклассов и поподклассов (4-13);
Каждый фермент имеет свой шифр КФ 1.1.1.1. Первая цифра обозначает класс, вторая - подкласс, третья - подподкласс, четвертая - порядковый номер фермента в его подподклассе (в порядке открытия).
Название фермента состоит из 2 частей: 1 часть – название субстрата (субстратов), 2 часть – тип катализируемой реакции. Окончание – АЗА;
Дополнительная информация, если необходима, пишется в конце и заключается в скобки: L-малат + НАДФ+ ↔ ПВК + СО2 + НАДН2 L-малат: НАДФ+ - оксидоредуктаза (декарбоксилирующая);
В правилах названия ферментов нет единого подхода.
- Кафедра биохимии
- Лекция № 1 Тема: Введение в биохимию. Ферменты: строение, свойства, локализация, номенклатура и классификация
- Строение ферментов
- 1. Оксидоредуктазы
- 2. Трансферазы
- 4. Лиазы
- 5. Изомеразы
- 6. Лигазы (синтетазы)
- Кафедра биохимии
- Лекция № 2
- Тема: Регуляция активности ферментов в клетке.
- Общие представления о гормонах и
- Их роли в регуляции активности ферментов.
- 2 Курс.
- 1). Аллостерическая регуляция каталитической активности ферментов
- III. Механизмы регуляции количества ферментов
- Клеточная сигнализация
- Рецепторы
- Участие рецепторов в трансмембранной передаче сигнала
- 3). Рецепторы, сопряженные с g-белками (gpcr от англ. G – protein coupled receptor), по строению их еще называют серпантинными.
- Регуляторные белки
- Вторичные посредники (мессенджеры)
- Ферменты
- Трансмембранная передача информации с участием аденилатциклазной системы
- Аденилатциклазная система активируется:
- Инозитолтрифосфатная система активируется:
- Трансмембранная передача информации с участием гуанилатциклазной системы
- Трансмембранная передача информации с участием цитоплазматических и ядерных рецепторов
- Кафедра биохимии
- Лекция № 3 Тема: Медицинская энзимология
- 2 Курс.
- I. Энзимопатология
- 1. Наследственные энзимопатии
- Наследственные энзимопатии по типу нарушений метаболизма делят на:
- 2. Приобретенные энзимопатии
- II Энзимодиагностика
- 1) Определение активности органо-, органеллоспецифических ферментов и их изоферментов.
- 2) Определение активности ферментов и их констант (Km, t, pH).
- 3) Определение концентрации органических веществ с помощью ферментов.
- III Энзимотерапия