logo
Концепции современного естествознания

53. Хромосомы: понятие, типы

Генетический материал, содержащийся в клетке, образует структурно дифференцированные единицы, называемые хромосомами. Хромосомы представляют собой мультимолекулярные агрегаты, образованные преимущественно молекулами ДНК и белка и содержащие небольшое количество РНК, не являющейся, строго говоря, структурной частью хромосомы.

Строение хромосом хорошо видно на стадии мета-фазы митоза. Изучение хромосом позволило установить следующие факты:

1) во всех соматических клетках любого растительного или животного организма число хромосом одинаково;

2) в половых клетках содержится всегда вдвое меньше хромосом, чем в соматических клетках данного вида организмов;

3) у всех организмов, относящихся к одному виду, число хромосом в клетках одинаково (например, у человека в соматических клетках имеется 23 пары хромосом, а у голубя – 40).

Число хромосом в соматических клетках всегда четное, так как в них находятся по две одинаковых по форме и размерам хромосомы: одна от отцовского организма, а другая – от материнского. Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного или диплоидного. В половые клетки из каждой пары хромосом попадает только одна, поэтому хромосомный набор в этом случае называется одинарным или гаплоидным.

В определении формы хромосом большое значение имеет положение так называемой первичной перетяжки, или центромеры, – области, к которой во время митоза прикрепляются трубочки веретена. Центромера делит хромосому на два плеча. Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом.

54. ДНК

Непосредственным носителем наследственной информации в хромосомах является дезоксирибонуклеиновая кислота (ДНК) – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц); сахар – дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов (рис. 1).

Рис. 1. Схема строения нуклеотида

В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу с помощью водородных связей между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Количество таких связей между разными азотистыми основаниями неодинаково, и вследствие этого они могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с Т другой цепи, а Г – тремя водородными связями с азотистым основанием Ц противоположной полинуклеотидной цепочки. Такая способность к избирательному соединению нуклеотидов называется комплементарностью. Комплементарное взаимодействие нуклеотидов приводит к образованию пар нуклеотидов. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты.

В 1953 году американским биофизиком Дж. Уотсоном (род. 1928) совместно с английским биофизиком и генетиком Ф. Криком (род. 1916) была предложена модель пространственной структуры ДНК в виде двойной спирали.

Таким образом, в структурной организации молекулы ДНК можно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные по-линуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль. Диаметр спирали составляет 2 нм, длина шага – 3,4 нм. В каждый виток входит 10 пар нуклеотидов. Длина спирали молекулы ДНК зависит от организма, которому она принадлежит. ДНК простейших вирусов содержит несколько тысяч нуклеотидных пар, бактерий – несколько миллионов, а высших организмов – миллиарды. Если выстроить в одну линию все молекулы ДНК, заключенные в одной клетке человека, то получится нить длиной 2 м, т. е. ее длина в миллиард раз больше ее толщины.

55. РНК

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, хранящейся в ДНК, в рабочую форму, играют рибонуклеиновые кислоты (РНК).

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар – рибозу (вместо дезоксирибозы), остаток фосфорной кислоты и одно из четырех азотистых оснований: аденин, гуанин, цитозин или урацил (вместо тимина). В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. РНК синтезируются на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности, причем аденину ДНК в РНК комплементарен урацил.

В зависимости от функции и местонахождения в клетке можно выделить три вида РНК: информационные (иРНК), транспортные (тРНК) и рибосомные (рРНК). Каждая из этих РНК синтезируется на определенном участке ДНК. Процесс синтеза информационной РНК, который называют транскрипцией – переписыванием информации, начинается с обнаружения РНК-полимеразой особого участка в молекуле ДНК, указывающего место начала транскрипции – промотора. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи ДНК в этом месте расходятся, и на одной из них фермент осуществляет синтез иРНК. Размер иРНК зависит от длины участка ДНК, на котором она была синтезирована. Молекулы иРНК могут состоять из 300-30 000 нуклеотидов.

В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК пройденные ею одно-цепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции иРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов иРНК, шифрующие аминокислоты, называются кодонами. Последовательность кодонов иРНК шифрует последовательность аминокислот в полипептидной цепи. Кодонам иРНК соответствуют определенные аминокислоты.