logo
otvety

23.Геномные мутации, причины и механизмы их возникновения. Классификация и значение. Антимутационные механизмы.

К геномным мутациям относят гаплоидию, полиплоидию и анеуплоидию.

Анеуплоидией называют изменение количества отдельных хромосом- отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом,т.е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза, в связи с чем различают митотическую и мейотическую.

Причины мутаций

Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около — на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминированияцитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

геномные;

хромосомные;

генные:

Геномные: — полиплоидизацияизменение числа хромосом, не кратное гаплоидному набору. В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом.

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях

Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации ДНК.

24.Человек как объект генетических исследований. Цитогенетический метод; его значение для диагностики хромосомных синдромов. Правила составления идиограмм здоровых людей. Идиограммы при хромосомных синдромах(аутосомные и гоносомных). Примеры.

Человек, как объект генетических исследований представляет сложность:

Цитигенетический метод (основан на изучеии кариотипа). Кариотип изучают на метофазных пластинках в культуре лимфаитов крови. Метод позволяет диагностировать хромосомные болезни, появляющиеся в результате геномных и хромосомных мутаций.

Цитологический контроль необходим для диагностики хромо-сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер со-матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

Выявление многих наследствен-ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании

25.Биохимический метод изучения генетики человека; его значение для диагностики наследственных болезней обмена веществ. Роль транскрипционных, посттранскрипционных и посттрансляционных модификаций в регуляции клеточного обмена. Примеры.

Биохимический метод генетики человека

С помощью биохимических методов изучают наследственные заболевания, обусловленные генными мутациями, и полиформизм по нормальным первичным продуктам генов. Впервые эти методы генетики человека стали применять в начале ХХ в. В последнее время их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта.

Биохимическую диагностику наследственных нарушений обмена проводят в 2 этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором – более сложными и точными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называется матричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5'- к З'-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте

Посттранскрипционныемодификации первичноготранскриптатРНК (процессинг тРНК)

ПервичныйтранскрипттРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичныхтранскриптовтРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3'-конца тРНК катализирует РНК-аза, представляющая собой 3'-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3'-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков

Посттранскрипционные модификации (процессинг) первичноготранскриптарРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичныхтранскриптов. Первичныетранскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

26.. Генеалогический метод генетики человека. Основные правила составления и последующего анализа родословных схем (на примере собственной семейной родословной схеме). Значение метода в изучении закономерностей наследования признаков.

Методы генетики человека

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:

1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Целый ряд признаков наследуется сцепленно с полом: Х-сцепленное наследование — гемофилия, дальтонизм; Y-сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х- и Y-хромосом, например общая цветовая слепота.

метод анализа родословных, является наиболее фундаментальным и универсальным методом изучения наследственности и изменчивости человека. Он заключается в изучении какого-либо нормального или чаще патологического признака в поколениях людей, которые находятся друг с другом в родственных отношениях. Генеалогический метод опирается на генеалогию – учение о родословных. Сутью генеалогического метода является составление и анализ родословных. Генеалогический метод соответствует основному методу генетики — гибридологическому методу, который был впервые разработан Г. Менделем. Но в отличие от него исследователи не подбирают родительские пары для целенаправленного скрещивания, а лишь детально анализируют результаты процесса естественной репродукции людей. Анализу по изучаемому признаку подвергается одна или несколько десятков семей с многочисленными родственниками разных поколений. Использование большого количества семей отчасти компенсирует низкую плодовитость человека и увеличивает число изучаемых потомков.

Методы изучения наследственности человека

Генеалогический метод — составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;

Цитогенетический метод — изучение хромосомных наборов здоровых и больных людей. Результат изучения — определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;

Биохимический метод — изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения — определение нарушений в составе крови, в околоплодной жидкости и т. д.;

Близнецовый метод — изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения — определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;

Популяционный метод — изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения — определение распространения мутаций и естественного отбора в популяциях человека.

Методы изучения наследственности человека

Генеалогический метод — составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;

Цитогенетический метод — изучение хромосомных наборов здоровых и больных людей. Результат изучения — определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;

Биохимический метод — изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения — определение нарушений в составе крови, в околоплодной жидкости и т. д.;

Близнецовый метод — изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения — определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;

Популяционный метод — изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения — определение распространения мутаций и естественного отбора в популяциях человека.

Билет 27 Популяционно – статистический метод генетики; его значение в изучении генетической структуры популяций. Закон и формулы Харди – Вайнберга.

Популяционно-статистический метод

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди — Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции.На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Распространив эти сведения на ближайшие поколения, можно предсказать частоту появления в них людей с рецессивным признаком, а также гетерозиготных носителей рецессивного аллеля.

Математическим выражением закона Харди — Вайнберга служит формула (рА. + qa)2, где р и q — частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот — носителей скрытого рецессивного аллеля: p2AA + 2pqAa + q2аа. Например, альбинизм обусловлен отсутствием фермента, участвующего в образовании пигмента меланина и является наследственным рецессивным признаком. Частота встречаемости в популяции альбиносов (аа) равна 1:20 000. Следовательно, q2 = 1/20 000, тогда q = 1/141, up = 140/141. В соответствии с формулой закона Харди — Вайнберга частота встречаемости гетерозигот = 2pq,т.е. соответствует 2 х (1/141) х (140/141) = 280/20000 = 1/70. Это означает, что в данной популяции гетерозиготные носители аллеля альбинизма встречаются с частотой один на 70 человек.

Закон Харди — Вайнберга — это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идетмутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотиповпо какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

p² + 2pq + q² = 1

Где p² — доля гомозигот по одному из аллелей; p — частота этого аллеля; q² — доля гомозиготпо альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот.

Биологический смысл закона Харди — Вайнберга

Процесс наследования не влияет сам по себе на частоту аллелей в популяции, а возможные изменения её генетической структуры возникают вследствие других причин.

Билет 28 Методы генетики человека: дерматоглифический (на примере анализа собственного дерматоглифа), генетики соматических клеток, изучения ДНК; их роль в изучении наследственной патологии человека.

Методы дерматоглифики и пальмоскопии - как методы генетики человека

В 1892г. Ф.Гальтоном в качестве одного из методов исследования человека был предложен метод изучения кожных гребешковых узоров пальцев и ладоней, а также сгибательных ладонных борозд. Он установил, что указанные узоры являются индивидуальной характеристикой человека и не изменяются в течении жизни.

В настоящее время установлена наследственная обусловленность кожных узоров, хотя характер наследования окончательно не выяснен.вероятно, признак наследуется по полигенному типу.

Дерматоглифические исследования важны при идентификации близнецов. Изучение людей с хромосомными заболеваниями выявило у них специфические изменения не только рисунков пальцев и ладоней, но и характера основных сгибательных борозд на коже ладоней. Менее изучены дерматоглифические изменения при генных болезнях.

В основном эти методы генетики человека применяют с целью установления отцовства.

Методы генетики соматических клеток

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что компенсирует невозможность применения к человеку гибридологического анализа. Эти методы, основанные на размножении этих клеток в искусственных условиях, анализировать генетические процессы в отдельных клетках организма, и благодаря полноценности генетического материала использовать их для изучения генетических закономерностей целого организма.

В генетических исследованиях человека используют следующие приемы:

  1. культивирование – позволяет получить достаточное количество генетического материала для различных исследований;

  2. клонирование – получение потомков одной клетки;

  3. селекция соматических клеток с помощью искусственных сред используется для отбора клеток  с интересующими исследователя свойствами;

  4. гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов.

Гибридные клетки, содержащие 2 полных генома, при делении обычно «теряют» хромосомы предпочтительно одного из видов. Таким образом, можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах.

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

Изучение ДНК: строение, структура ДНК, функции

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природерепликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.

Билет 29 Моногенные, хромосомные и мультифакториальные болезни человека, механизмы их возникновения и проявления. Примеры.

• моногенные болезни

Моногенным называется такой тип наследования, когда наследственный признак контролируется одним геном.

Моногенные заболевания подразделяются по типу наследования: аутосомно-доминантные (то есть, если хоть один из родителей болен, то и ребенок будет болеть), например -синдром Марфана, нейрофиброма-тоз, ахондроплазия – аутосомно-рецессивные (ребенок может заболеть, если оба родителя носители этого заболевания, или один родитель болен, а второй – носитель мутаций гена, вызывающих это заболевание)  – муковисцидоз, спинальная миоатрофия. Пристальное внимание к этой группе болезней обусловлено и тем, что, как оказалось, число их значительно выше, чем думали раньше. У всех болезней совершенно различная распространенность, которая может колебаться в зависимости и от географии и от национальности, например, хорея Хангтингтона встречается у 1 на 20 000 европейцев и почти не встречается в Японии, болезнь Тея-Сакса характерна для евреев-ашкенази и крайне редка у других народов. В России наиболее распространнеными моногенно наследуемыми заболеваниями являются муковисцидоз (1/12000 новорожденных), группа миоатрофий (1/10000 новорожденных), гемофилия А (1/5000 новорожденных мальчиков). Конечно, многие моногенные заболевания выявлены уже давно и хоро¬шо известны медицинским генетикам.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Аномалии числа хромосом

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения

Мультифакториальные заболевания, или болезни с наследственным предрасположенность

Группа болезней отличается от генных болезней тем, что для своего проявления нуждается в действии факторов внешней среды. Среди них также различают моногенные, при которых наследственная предрасположенность обусловлена одним патологически измененным геном, и полигенные. Последние определяются многими генами, которые в нормальном состоянии, но при определенном взаимодействии между собой и с факторами среды создают предрасположение к появлению заболевания. Они называются мультифакториальными заболеваниями (МФЗ).

Заболевания моногенные с наследственным предрасположением относительно немногочисленны. К ним применим метод менделевского генетического анализа. Учитывая важную роль среды в их проявлении, они рассматриваются как наследственно обусловленные патологические реакции на действие различных внешних факторов (лекарственных препаратов, пищевых добавок, физических и биологических агентов), в основе которых лежит наследственная недостаточность некоторых ферментов.

К таким реакциям могут быть отнесены наследственно обусловленная непереносимость сульфаниламидных препаратов, проявляющаяся в гемолизе эритроцитов, повышении температуры при применении общих анестезирующих средств.

У человека описана мутация, обусловливающая патологическую реакцию на загрязнение атмосферы, которая проявляется в раннем развитии эмфиземы легких (в возрасте 30—40 лет). У генетически чувствительных индивидов нежелательные реакции могут вызывать некоторые компоненты пищи и пищевые добавки. Известна непереносимость у ряда людей молочного сахара —лактозы. Гены непереносимости лактозы широко распространены среди азиатского населения (до 95—100%) и среди американских негров и индейцев (до 70—75%). У некоторых людей наблюдается непереносимость к употребляемым в пищу конским бобам, вызывающим у них гемолиз. Ряд лиц не переносит жирной пищи и в раннем возрасте страдает атеросклерозом, что повышает риск инфаркта миокарда. У некоторых людей употребление в пищу сыра и шоколада провоцирует мигрень. Отмечены специфические реакции людей на алкоголь. Консерванты и пищевые красители у некоторых людей не подвергаются нормальному усвоению, что также проявляется в непереносимости этих компонентов пищи.

Билет 30 Понятие о болезнях с нетрадиционным наследованием (митохондриальные, болезни импритинга, болезни экспансии тринуклеотидных повторов). Примеры. Общие подходы к лечению наследственных болезней.

Митохондриальные болезни. Начиная с конца 80-х годов XX века получены убедительные доказательства связи некоторых видов наследственной патологии у человека с мутациями митохондриальной ДНК (см. гл. 4.1) В зависимости от типа мутаций митохондриальные болезни разделяют на 4 группы:

а) болезни, вызванные точковыми мутациями, приводящими к замене консервативных аминокислот в собственных белках митохондрий. К ним относятся пигментный ретинит и нейроофтальмопатияЛебера, при которой наступает двусторонняя потеря зрения. Выраженность клинических признаков у больных этими заболеваниями коррелирует с количеством мутантной мтДНК, которое у разных больных может варьировать от 5 до 100% всей мтДНК;

б) болезни, вызванные мутациями в генах т-РНК, приводящими к многочисленным дегенеративным заболеваниям с различной степенью тяжести клинических проявлений, коррелирующей с количеством мутантной мтДНК;

в) болезни вызванные делениями и дупликациями участков митохондриалъных генов. У человека описано тяжелое заболевание молодого и среднего возраста — отсроченнаякардиопатия, при которой обнаружены делециимтДНКкардиоцитов. Заболевание носит семейный характер. В ряде случаев предполагается Х-сцепленное наследование, что позволяет думать о существовании ядерного гена, мутация которого вызывает делению до 50% мтДНКкардиоцитов;

г) болезни, вызванные снижением числа копий мтДНК, что является следствием определенных мутаций. К данной группе относятся летальная инфантильная дыхательная недостаточность и синдром молочнокислого ацидоза, при которых число копий мтДНК снижается до 1—2% от нормы. Снижение содержания мтДНК в клетках различных органов приводит к развитию миопатий, нефропатий, печеночной недостаточности и т.д. вследствие ослабления синтеза белков, кодируемых мтДНК.

Изменения в ДНК митохондрий сопровождаются нарушением их функций, связанных с клеточным дыханием. Это определяет характер и степень тяжести клинических проявлений митохондриалъных болезней.

Выдвинута также гипотеза о том, что накопление спонтанно возникающих мутаций мтДНК является звеном механизмов старения и развития дегенеративных процессов у человека.

Болезни экспансиитринуклеотвдных повторов с явлением антиципации. Под генетической антиципацией (или упреждением) понимается более раннее проявление и возрастание тяжести симптомов наследственного заболевания в последующих поколениях родословной. Антиципация реально проявляется при определенных видах моногенной неврологической патологии, а также при некоторых мультифакториальных заболеваниях.

Феномен экспансии числа тринуклеотидных повторов был впервые обнаружен при исследовании синдрома Мартина—Белла или синдрома фрагильной (ломкой) Х-хромосомы, основным фенотипическим проявлением которого является умственная отсталость. Синдром ломкой Х-хромосомы характеризуется довольно широкой распространенностью в популяции (1:1000) и необычным характером наследования. Лишь у 80% мужчин-носителей мутантного локуса имеются клинические и цитогенетические признаки заболевания. 20% носителей как клинически, так и цитогенетически нормальны, но после передачи мутации всем своим дочерям они могут иметь пораженных внуков. Неэкспрессируемый мутантный ген в таком случае становится экс-прессируемым в последующих поколениях.

Таким образом мутантный ген при синдроме ломкой Х-хромосомы может существовать в двух формах, отличающихся по своей пенетрантности. Одна — фенотипически не проявляющаяся — премутация, которая при прохождении через женский мейоз превращается в другую форму — полную мутацию. При таком необычном способе наследования и фенотипического проявления мутантного гена, отличном от классического Х-сцепленного наследования, обнаруживается феномен антиципации — более тяжелое проявление заболевания в последующих поколениях.

В основе клинических проявлений и цитологической нестабильности в локусе, ответственном за синдром ломкой Х-хромосомы, лежит многократное увеличение повторов тринуклеотида ЦГГ. В норме число повторов колеблется от 5 до 50. Премутация — неэкспрессируемая форма — характеризуется увеличением числа повторов до 50—200. Возрастание числа повторов тринуклеотида ЦГГ свыше 200 приводит к клинической манифестации заболевания и цитогенетическому проявлению ломкой Х-хромосомы. Как правило, у пораженных лиц наблюдается также аномальное метилирование ДНК, приводящее к репрессированию гена.

Интересно, что переход от состояния премутации к полной мутации возникает при передаче от матери, причем экспансия ЦГГ-повторов значительно выше при передаче от матери к сыну, чем от матери к дочери.

Антиципация, характерная для синдрома ломкой Х-хромосомы, объясняется четкой связью между числом тринуклеотидных повторов и тяжестью клинических проявлений заболевания с цитологической экспрессией ломкости Х-хромосомы.

Увеличение числа тринуклеотидных повторов и связанное с этим явление антиципации обнаружены при целом ряде заболеваний (табл. 6.3). Например, при аутосомно-доминантном заболевании—хорее Гетинггона выявляется четкая корреляция между числом ЦАГ-повторов и возрастом дебюта заболевания. У потомков пораженных отцов обнаруживается более тяжелое клиническое течение заболевания. Экспансия числа тринуклеотидных повторов происходит в мужском гаметогенезе.

Болезни импринтинга. Особенности наследования и фенотипического проявления при болезнях импринтинга обусловлены явлением геномного импринтинга (ГИ) (импринтинг от англ. imprinting — запечатление).

Явление геномного импринтинга связывают со специфическими изменениями хромосом или их участков во время образования мужских и женских гамет. Этим объясняется дифференциальная маркировка отцовских и материнских хромосом у потомков.

Точные механизмы дифференциальной маркировки хромосом или их участков в сперматогенезе или овогенезе пока окончательно не выяснены. Однако, немаловажная роль, вероятно, принадлежит процессам специфического метилированияцитозиновых оснований ДНК, выключающим транскрипцию гена.

Импринтированные участки в хромосомах определенного родительского происхождения (отцовских иди материнских) избирательно репрессируются у потомка. В связи с этим фенотипически проявляется только информация, полученная от другого родителя, т.е. имеет место моноаллельная экспрессия. Следовательно, фенотипическое проявление мутантного аллеля зависит от того с какой половой клеткой (яйцеклеткой или сперматозоидом) он был передан потомку.

Связь этиологии ряда наследственных заболеваний с феноменом ГИ может быть прослежена на разных уровнях организации генетического материала.

На геномном уровне организации наследственного материала доказательством роли ГИ в патологии служит различное фенотипическое проявление триплоидных состояний при разном соотношений гаплоидных наборов отцовского и материнского происхождения.

У диандрическихтриплоидов (соотношение числа гаплоидных наборов отца и матери 2:1) и у дигеническихтриплоидов (соотношение 1:2) патологические отклонения в развитии плаценты и собственно зародышевых тканей проявляются по-разному. Это свидетельствует о неравноценности функционирования гаплоидных наборов отца и матери в тканях зародыша и плаценты

Связь феномена ГИ с патологией на уровне отдельных хромосом можно проследить в случае однородительскойдисомии (ОРД), при которой происходит удвоение хромосомы одного из родителей при утрате гомологичной хромосомы другого родителя.

В основе возникновения ОРД лежит нарушение процессов гаметогенеза. При нерасхождении сестринских хроматид в анафазе II мейоза появляются гаметы, в галлоидном наборе которых присутствуют две генетически идентичные хромосомы (изодисомия).

В случае нерасхождения гомологичных хромосом в анафазе I мейоза образуются гаметы, в гаплоидном наборе которых имеется пара гомологичных, генетически неидентичных хромосом (гетеродисомия). В обоих случаях гаметы данного индивида дисомны по одной из хромосом.

При оплодотворении дисомных гамет нулисомными по той же хромосоме подовыми клетками происходит комплемеитация гамет, приводящая к возникновению нормального диплоидного кариотипа зиготы. Однако в генотипе такой зиготы присутствует двойной набор генов данной хромосомы, происходящих от одного, а не от обоих родителей.

Иногда оплодотворение дисомных гамет нормальными половыми клетками сопровождается «коррекцией трисомии» в результате потери сверхчисленной хромосомы. Если при этом сохраняются две хромосомы, пришедшие от одного родителя, то наблюдается явление ОРД.

Наконец, состояние ОРД по отдельным локусам хромосом может возникать в результате соматической рекомбинации — кроссинговера между хроматидами гомологичных хромосом, происходящего в соматических клетках (см. рис 3.73).

Когда хромосома не содержит импринтированных участков, при ОРД по данной хромосоме может не наблюдаться аномалий фенотипа. Исключением может быть проявление аутосомно-рецессивного заболевания как результат гомозиготизации по рецессивномуаллелю при изодисомии.

Если хромосома содержит импринтированные участки, то при возникновении однородительскойдисомии локализованные в них аллели могут быть либо экспрессированы, либо инактивированы в зависимости от родительского происхождения ОРД. Это может стать причиной возникновения патологических отклонений в развитии организма. Фенотипическое проявление при ОРДмат и ОРДотц может быть сходным или прямо противоположным. Возможен летальный эффект уже на ранних сроках развития.

Из сказанного выше следует, что в проксимальном районе длинного плеча 15-й хромосомы имеются близкорасположенные и противоположно импринтированные локусы, отвечающие за возникновение фенотипически различных синдромов Прадера — Вилли и Энгельмана.

Таким образомимпринтироваться могут участки хромосом разного родительского происхождения, что и определяет нетрадиционное наследование многих патологических состояний, обусловленных мутациями локусов, подверженных импринтингу.