logo search
ekzamen

Вопрос 107

Условия и компоненты биосинтеза белка. Биосинтез белка зависит от деятельности различных видов РНК. Информационная РНК (иРНК) служит посредником в передаче информации о первичной структуре белка и матрицей для его сборки. Транспортная РНК (тРНК) переносит аминокислоты к месту синтеза и обеспечивает последовательность их соединений. Рибосомальная РНК (рРНК) входит в состав рибосом, на которых происходит сборка полипептидной цепи. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называют трансляцией (от лат. трансляцио — передача).

Для непосредственного биосинтеза белка необходимо, чтобы в клетке присутствовали следующие компоненты:

  1. информационная РНК (иРНК) — переносчик информации от ДНК к месту сборки белковой молекулы;

  2. рибосомы — органоиды, где происходит собственно биосинтез белка;

  3. набор аминокислот в цитоплазме;

  4. транспортные РНК (тРНК), кодирующие аминокислоты и переносящие их к месту биосинтеза на рибосомы;

  5. ферменты, катализирующие процесс биосинтеза;

  6. АТФ — вещество, обеспечивающее энергией все процессы.

Строение и функции тРНК. Процесс синтеза любых РНК — транскрипция (от лат. транскрипций — переписывание) — относится к матричным реакциям (об этом было сказано ранее). Теперь разберем строение транспортной РНК (тРНК) и процесс кодирования аминокислот.

Транспортные РНК представляют собой небольшие молекулы, состоящие из 70—90 нуклеотидов. Молекулы тРНК свернуты определенным образом и напоминают по форме клеверный лист (рис. 62). В молекуле выделяются несколько петель. Наиболее важной является центральная петля, в которой располагается антикодон. Антикодоном называют тройку нуклеотидов в структуре тРНК, комплементарно соответствующих кодону определенной аминокислоты. Своим антикодоном тРНК способна соединяться с кодоном иРНК.

Рис. 62. Строение молекулы тРНК

На другом конце молекул тРНК всегда находится тройка одинаковых нуклеотидов, к которым присоединяется аминокислота. Реакция осуществляется в присутствие специального фермента с использованием энергии АТФ (рис. 63).

Рис. 63. Реакция присоединения аминокислоты к тРНК

Сборка полипептидной цепи на рибосоме. Сборка цени начинается с соединения молекулы иРНК с рибосомой. По принципу комплементарности тРНК с первой аминокислотой соединяется антикодоном с соответствующим кодоном иРНК и входит в рибосому. Информационная РНК сдвигается на один триплет и вносит новую тРНК со второй аминокислотой. Первая тРНК передвигается в рибосоме. Аминокислоты сближаются друг с другом, между ними возникает пептидная связь. Затем иРНК вновь передвигается ровно на один триплет. Первая тРНК освобождается и покидает рибосому. Вторая тРНК с двумя аминокислотами передвигается на ее место, а в рибосому входит следующая тРНК с третьей аминокислотой (рис. 64). Весь процесс вновь и вновь повторяется. Информационная РНК, последовательно продвигаясь через рибосому, каждый раз вносит новую тРНК с аминокислотой и выносит освободившуюся. На рибосоме постепенно растет полипептидная цепь. Весь процесс обеспечивается деятельностью ферментов и энергией АТФ.

Рис. 64. Схема сборки полнпептидпои цепи иа рибосоме: 1—4 последовательность этапов

Сборка полипептидной цепи прекращается как только в рибосому попадает один из трех стоп-кодонов. С ними не связана ни одна тРНК. Освобождается последняя тРНК и собранная полипептидная цепь, а рибосома снимается с иРНК. Полипептидная цепь затем претерпевает структурные изменения и превращает в белок. Биосинтез белка закончен.

Процесс сборки одной молекулы белка длится в среднем от 20 до 500 с и зависит от длины полипептидной цеп и. Например, белок из 300 аминокислот синтезируется приблизительно за 15—20 с. Белки структурно и функционально очень разнообразны. Они определяют развитие того или иного признака организма, что является основой специфичности и неоднородности живого.

Реализация наследственной информации в клетке. Реализация наследственной информации в живом осуществляется в реакциях матричного синтеза, протекающих в клетке (рис. 65).

Рис. 65. Реализация наследственной программы в клетке: 1 — транскрипция; 2 — реакция присоединения аминокислоты; 3 — трансляция; 4 — ДНК; 5 — информационная РНК; 6 — транспортная РНК; 7 — аминокислота; 8 — рибосома; 9 — синтезированный белок

Редупликация ведет к построению новых молекул ДНК, что необходимо для точного копирования генов и их передачи дочерним клеткам от материнской при делении. Биосинтез белка также связан с генетическим кодом и генами. Посредством реакций транскрипции и трансляции, для которых необходимы РНК, аминокислоты, рибосомы, ферменты и АТФ, в клетке синтезируются специфические белки. Они определяют ее характерные признаки, т. к. в первую очередь при биосинтезе происходит сборка белков-ферментов, отвечающих за протекание жизненных реакций в клетке.

Биосинтез белка является частью процесса реализации генетической программы клетки и всего организма. Этот процесс, как и синтез РНК, и редупликация ДНК, относится к реакциям матричного синтеза. Но в отличие от двух последних реакций биосинтез белка протекает на органоидно-клеточном уровне организации живого.