21.Поток вещества и энергии в биоценозе
Поток вещества — перемещение последнего в форме химических элементов и их соединений от продуцентов к редуцентам (через консументы или без них).
Поток энергии — переход энергии в виде химических связей органических соединений (пищи) по цепям питания от одного трофического уровня к другому (более высокому).
В отличие от веществ, которые постоянно циркулируют по разным блокам экосистемы и всегда могут вновь участвовать в круговороте, поступившая энергия может быть использована только один раз.
Как универсальное явление природы, односторонний приток энергии обусловлен действием законов термодинамики. Согласно первому из них:
энергия может переходить из одной формы (энергии света) в другую (потенциальную энергию пищи), но она никогда не создается вновь и не исчезает бесследно.
Согласно второму закону термодинамики не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части. Поэтому не может быть превращений, например, пищи в вещество, из которого состоит тело организма, идущих со 100%-ной эффективностью.
Таким образом, функционирование всех экосистем определяется постоянным притоком энергии, которая необходима всем организмам для поддержания их существования и самовоспроизведения.
В процессе изучения развития экосистем следует учитывать и конкурентные отношения. В этом аспекте большой интерес представляет закон максимизации энергии (Г. Одум — Ю. Одум): в соперничестве с другими экосистемами выживает (сохраняется) та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное ее количество наиболее эффективным способом.
Авторы данного закона указывают: «с этой целью система: 1) создает накопители (хранилища) высококачественной энергии (например, запасы жира); 2) затрачивает определенное количество накопленной энергии на обеспечение поступления новой энергии; 3) обеспечивает круговорот различных веществ; 4) создает механизмы регулирования, поддерживающие устойчивость системы и ее способность к приспособлению к изменяющимся условиям; 5) налаживает с другими системами обмен, необходимый для обеспечения потребности в энергии специальных видов».
Закон максимизации энергии справедлив и в отношении информации, следовательно (по Н.Ф. Реймерсу), его возможно рассматривать и как закон максимизации энергии и информации с такой формулировкой:
наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации.
Ранее отмечалось, что между организмами биоценоза возникают и устанавливаются прочные пищевые взаимоотношения, или цепь питания. Последняя состоит из трех основных звеньев: продуцентов, консументов и редуцентов.
Цепи питания, которые начинаются с фотосинтезирующих организмов, называют цепями выедания (или пастбищными), а цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных, — детритными цепями.
Место каждого звена в цепи питания называют трофическим уровнем, он характеризуется различной интенсивностью протекания потока веществ и энергии.
Первый трофический уровень всегда составляют продуценты; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм, - к третьему; потребляющие других плотоядных — соответственно к четвертому, и т.д. Вследствие этого различают консументов первого, второго, третьего и четвертого порядков, занимающих разные уровни в цепях питания.
Очевидно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в цепи питания на разных трофических уровнях. В рацион например, человека входит как растительная пиша, так и мясо травоядных и плотоядных животных. Поэтому он выступает в разных пищевых цепях в качестве консумента первого, второго или третьего порядков.
Так как при передаче энергии с одного уровня на другой происходит ее потеря, цепь питания не может быть длинной. Обычно она состоит из 4—6 звеньев.
Однако такие цепи в чистом виде в природе обычно не встречаются, поскольку одни и те же виды могут быть одновременно в разных звеньях. Это обусловлено тем, что монофагов в природе мало, намного чаще встречаются олигофаги и полифаги. Например, хищники, которые питаются различными растительноядными и плотоядными животными, являются звеньями многих цепей. Из-за этого в каждом биоценозе исторически формируются комплексы цепей питания, представляющие собой единое целое. Подобным образом создаются сети питания, которые отличаются большой сложностью.
Таким образом, можно сделать вывод о том, что пищевая цепь — основной канал переноса энергии в сообществе.
В ходе фотосинтеза растения связывают в среднем лишь около 1% попадающей на них солнечной энергии. Животное, которое съело растение, часть пищи не переваривает и выделяет в виде экскрементов. Усваивается обычно 20—60% растительного корма, усвоенная энергия расходуется на поддержание жизнедеятельности животного. Функционирование организма сопровождается выделением тепла, в результате существенная доля энергии пищи вскоре рассеивается в окружающей среде. Сравнительно небольшая часть пищи идет на построение новых тканей и создание жировых запасов. В дальнейшем хищник, съевший это растительноядное животное и представляющий третий трофический уровень, получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы (второй уровень) в виде прироста биомассы.
Согласно расчетам, на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90% энергии и только около одной десятой доли ее переходит к очередному потребителю. Указанное соотношение в передаче энергии в пищевых связях организмов называют <<правилом десяти процентов» (принцип Линдемана). Например, количество энергии, которая доходит до третичных плотоядных (пятый трофический уровень), составляет лишь около 10-4 энергии, поглощенной продуцентами. Тем самым объясняется ограниченное количество (5—6) звеньев (уровней) в пищевой цепи независимо от сложности видового состава биоценоза.
Рассматривая поток энергии в экосистемах, легко понять также, почему с повышением трофического уровня биомасса снижается. Здесь проявляется третий основной принцип функционирования экосистем: чем больше биомасса популяции, чем ниже должен быть занимаемый ею трофический уровень, или иначе: на конце длинных пищевых цепей не может быть большой биомассы.
- 1. Предмет, содержание и задачи экологии.
- 2. Основные направления, способы и методы экологических исследований.
- 3. Условия существования организмов и экологические факторы среды.
- 4.Биотические факторы.
- 5.Антропогенные факторы.
- 6.Значение света в жизни живых организмов. Экологические группы растений по отношению к свету: гелиофиты, сциофиты, теневыносливые растения.
- 7.Время как экологический фактор.
- 8.Температура, ее значение в жизни живых организмов.
- 9.Вода, ее значение в жизни живых организмов.
- 10. Роль температуры и влажности в распределении растений и животных
- 11. Пища как экологический фактор. Подразделение живых организмов по способу питания (автотрофы и гетеротрофы).
- 12. Понятие о сапрофитах и паразитах
- 13. Виды взаимосвязей организмов: трофические, топические, форические, фабрические и др.
- 1.Симбиоз
- 2.Нейтрализм
- 3.Антибиоз
- 15. Межвидовая конкуренция.
- 16.Понятие о популяциях. Структура, динамика, плотность популяций. Колебания численности. Гомеостаз.
- 17. Основные понятия синэкологии: биоценоз, биогеоценоз, экосистема, агроценоз, биосфера. Экологическая ниша.
- 18 Структуры биоценозов: видовая, морфологическая, пространственная, трофическая.
- 20.Экологические пирамиды численности и биомассы
- 21.Поток вещества и энергии в биоценозе
- 22.Жизнь биоценозов во времени. Экологические сукцессии
- 23. Распределение разных типов биоценозов на земном шаре
- 24.Особенности агроценозов