3.3. Категория субстанции
Непосредственно возникновение европейской науки принято связывать с милетской школой, названной так потому, что первые ученые Древней Греции были жителями города Милет, расположенного на территории полуострова Малая Азия. Представители милетской школы сформулировали исторически первую и наиболее фундаментальную проблему— проблему того первоначала, из которого возникат все вещи и в которое со временем они превращаются. Иначе говоря, историческая заслуга милетской школы состояла в постановке первой и важнейшей естественно-научной проблемы — проблемы первоначала, субстанции мира. Представители милетской школы (Фалec, Анаксимандр, Анаксимен) были одновременно и первыми учеными-естествоиспытателями и первыми философами.
На уровне чувственного восприятия люди осознают, что окружающий их мир представляет собой многообразие самых разнообразных вещей — деревья, кустарники, поля, реки, озера, сами люди, звездное небо и т.д. Естествознание начинается тогда, когда сознание человека поднимается до уровня выработки высокой абстракции (категории) субстанции, позволяющей сформулировать вопрос, существует ли за многообразием вещей некое единое начало. Или, другими словами, «что есть все?» В свою очередь вопрос о субстанции, первоначале мира стал возможен тогда, когда уровень мыслительного абстрагирования позволил сформулировать представление о процедуре обоснования знания. Формой такого представления явилась идея математического доказательства.
Идея математического доказательства — это величайшее достижение древнегреческих мыслителей. В древневавилонской и древнеегипетской математике такая идея отсутствовала. Древневосточная математика, как мы отмечали выше, была представлена множеством алгоритмов, операций, которые обеспечивали вычислительный эффект, но не имели логического, теоретического обоснования. Однако, одно дело — сформулировать задачу и предложить алгоритм ее деленного решения, а совсем иное дело — не просто численно решить задачу, но и доказать, что это решение не только возможное, но и истинное.
Для доказательства надо иметь принципы решения целого класса проблем определенного типа. Это значит, что мышление должно оперировать некоторыми всеобщими логическими структурами. Среди таких структур важнейшая — категория субстанции. Не случайно основатель милетской школы («первый европейский ученый», как его называют) Фалес Милетский вошел в историю науки одновременно и как естествоиспытатель-философ, сформулировавший проблему субстанции мира, и как математик, сформулировавший идею математического доказательства. Фалесу приписывают доказательство следующих геометрических теорем: 1) круг делится диаметром пополам; 2) в равнобедренном треугольнике углы при основании равны; 3) при пересечении двух прямых образуемые ими вертикальные углы равны; 4) два треугольника равны, если два угла и одна сторона одного из них равны двум углам и соответствующей, стороне другого.
Каким образом представители милетской школы решали вопрос о субстанции мира, едином основании многообразия вещей? Фалес считал, что началом всех вещей, их субстанцией (т.е. то, из чего возникают все вещи и во что они в конечном счете превращаются) является вода. Другой представитель милетской школы Анаксимандр источником всего сущего, субстанцией всех вещей считал не воду, а некое вечное, беспредельное, безграничное, бесконечное начало, которое он назвал апейроном (т.е. «беспредельное»). В этом вечном, находящемся в непрерывном движении неопределенном первовеществе возникает как бы зародыш будущего мира. Мир периодически возвращается в это первовещество. Древние сообщали, что Анаксимандр был первым греком, начертившим географическую карту Земли, и распространял среди греков заимствованные на Востоке солнечные часы (гномон).
Последним великим представителем милетской школы был Анаксимен, который началом, основой, субстанцией мира считал воздух. Все возникает из воздуха через его разряжение и сгущение. Разряжаясь, воздух становится сначала огнем, затем эфиром, а сгущаясь — ветром, облаками, водой, землей и камнем. Анаксимен — один из наиболее ярких представителей «метеорологической» традиции древнегреческой науки, в которой основные естественно-научные проблемы (начала и структуры Космоса) решались по аналогии с метеорологическими процессами.
Для нас сейчас не так важно, как конкретно решали представители милетской школы проблему субстанции. Важен факт постановки самой проблемы субстанции мира, ориентирующей на дальнейшее развитие научно-рационального познания.
Милетская школа — это еще натурфилософское познание мира, здесь еще не разделились в полной мере естественно-научное и философское познание. Философская и естественно-научная картины мира здесь пока формируются в тесном единстве. Эту традицию продолжил Гераклит.
Гераклит из Эфеса — один из самих глубоких мыслителей Греции, оказавший значительное влияние на последующее развитие науки и философии. С мыслителями милетской школы его связывала проблема субстанции мира, первоосновы бытия. Но в центре учения Гераклита другая важнейшая идея — идея безостановочной изменчивости вещей, их текучести. Гераклит учил, что все в мире изменчиво, «все течет». Ничто в мире не повторяется, все преходяще и одноразово. Нельзя понять субстанцию мира, природу Космоса не учитывая его постоянную текучесть, изменчивость, то, что он все время находится в состоянии становления. Становление — это постоянное изменение, преобразование, движение, ведущее к созданию новых форм (вне зависимости от того, какими эти новые формы являются — более сложными или более простыми, прогрессивными или регрессивными высшими или низшими и др.); такие новые формы являются лишь повторением того, что уже однажды, когда-то было.
Какое же вещество больше всего соответствует в качестве субстанции мира его постоянной подвижности, текучести, изменчивости, становлению? Гераклит видел такую первооснову в огне, который в то время представлялся самым подвижным и изменчивым веществом. (Тогда люди еще не понимали, что огонь — это не вещество, как вода, воздух, земля, а реакция окисления с выделением теплоты и света.) От представления о том, что субстанция может быть текущей, изменчивой, становящейся, остается один шаг до мировоззрения, согласно которому мир кажется порождением мысленной абстракции. Этот важный шаг был осуществлен пифагорейцами.
- В.М.Найдыш Концепции современного естествознания
- Предисловие
- Введение Естествознание как отрасль научного познания
- B.I. Понятие культуры
- В.2. Материальная и духовная культура
- В.З. Наука как компонент духовной культуры
- В.4. Проблема культур в науке: от конфронтации к сотрудничеству
- В.5. Структура естественнонаучного познания
- Часть первая Основные исторические периоды развития естествознания
- 1. Накопление рациональных знаний в системе первобытного сознания
- 1.1. Повседневное, стихийно-эмпирическое знание
- 1.2. Зарождение счета
- 1.3. Мифология
- 2. Наука в цивилизациях древности
- 2.1. Становление цивилизации
- 2.1.1. Неолитическая революция
- 2.1.2. Рационализация форм деятельности и общения
- 2.1.3. Разделение труда и развитие духовной культуры
- 2.1.4. Возникновение письменности
- 2.1.5. «Культурное пространство» древневосточных цивилизаций
- 2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока
- 2.2.1. От Мифа к Логосу (Науке)
- 2.2.2. Географические знания.
- 2.2.3. Биологические, медицинские и химические знания
- 2.2.4. Астрономические знания
- 2.2.5. Математические знания
- 3. Создание первой естественнонаучной картины мира в древнегреческой культуре
- 3.1. Культурно-исторические особенности древнегреческой цивилизации
- 3.2. От Хаоса к Космосу
- 3.3. Категория субстанции
- 3.4. Мир как число
- 3.4.1. Пифагорейский союз
- 3.4.2. Математические и естественно-научные достижения пифагореизма
- 3.5. Формирование первых естественнонаучных программ
- 3.5.1. Великое открытие элеатов
- 3.5.2. Атомистическая программа
- 3.5.3. Математическая программа
- 3.6. Физика и космология Аристотеля
- 3.6.1. Учение Аристотеля о материи и форме
- 3.6.2. Космология Аристотеля
- 3.6.3. Основные представления аристотелевской механики
- 3.7. Естествознание эллинистически-римского периода
- 3.7.1. Культура эллинизма
- 3.7.2. Александрийская математическая школа
- 3.7.3. Развитие теоретической и прикладной механики
- 3.8. Развитие древнегреческой астрономии
- 3. 8.1. Становление математической астрономии
- 3.8.2. Геоцентрическая система Птолемея
- 3.9. Античные воззрения на органический мир
- 3. 9.1. Античные толкования проблемы происхождения и развития живого
- 3.9. 2. Биологические воззрения Аристотеля
- 3. 9.3. Накопление рациональных биологических знаний в античности
- 3.9.4. Античные представления о происхождении человека
- 3.10. Упадок античной науки
- 4. Естествознание в эпоху средневековья
- 4.1. Особенности средневековой духовной культуры
- 4.1.1. Доминирование ценностного над познавательным
- 4. 1.2. Отношение к познанию природы
- 4.1.3. Особенности познавательной деятельности
- 4.2. Естественно-научные достижения средневековой арабской культуры
- 4.2.1. Математические достижения
- 4.2.2. Физика и астрономия
- 4.3. Становление науки в средневековой Европе
- 4.4. Физические идеи средневековья
- 4.5. Алхимия как феномен средневековой культуры
- 4.6. Религиозная трактовка происхождения человека
- 4.7. Историческое значение средневекового познания
- 5. Познание природы в эпоху возрождения
- 5.1. Ренессанская мировоззренческая революция
- 5.2. Зарождение научной биологии
- 5.3. Коперниканская революция
- 5.3.1. Гелиоцентрическая система мира
- 5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма
- 6. Научная революция XVII в.: возникновение классической механики
- 6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- 6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории
- 6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»
- 6.2.2. Картезианская физика
- 6.2.3. Новые идеи в динамике Солнечной системы
- 6.3. Ньютонианская революция
- 6.3.1. Создание теории тяготения
- 6.3.2. Корпускулярная теория света
- 6.3.3. Космология Ньютона
- 6.4. Изучение магнитных и электрических явлений в XVII в.
- 7. Естествознание XVIII -первой половины XIX в.
- 7.1. Общая характеристика развития физики
- 7.1.1. Становление основных отраслей классической физики
- 7.1.2. Принцип дальнодействия
- 7.1.3. Теория теплорода
- 7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.
- 7.1.5. Физика первой половины XIX в.: общая характеристика
- 7.1.6. Волновая теория света
- 7.1.7. Проблема эфира
- 7.1.8. Возникновение полевой концепции
- 7.1.9. Закон сохранения и превращения энергии
- 7.1.10. Концепции пространства и времени
- 7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)
- 7.2. Развитие астрономической картины мира
- 7.2.1. Создание внегалактической астрономии
- 7.2.2. Формирование идеи развития природы
- 7.2.3. Идея развития в астрономии
- 7.2.4. Космогония и. Канта
- 7.2.5. Методологические установки классической астрономии
- 7.3. Возникновение и развитие научной химии
- 7.3.1. От алхимии к научной химии
- 7. 3.2. Лавуазье: революция в химии
- 7.3.3. Победа атомно-молекулярного учения
- 7.4. Биология
- 7.4.1. Образы, идеи, принципы и понятия биологии XVIII в.
- 7.4.2. От концепций трансформации видов к идее эволюции
- 7.4.3. Ламаркизм
- 7.4.4. Катастрофизм
- 7.4.5. Униформизм. Актуалистический метод
- 7.4.6. Дарвиновская революция
- 7.4.7. Методологические установки классической биологии
- 8. Естествознание второй половины XIX в.: на пути к новой научной революции
- 8.1. Физика
- 8.1.1. Основные черты
- 8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем
- 8.1.3. Развитие представлений о пространстве и времени
- 8.1.4. Теория электромагнитного поля
- 8.1.5. Великие открытия
- 8.1.6. Кризис в физике на рубеже веков
- 8.2. Астрономия
- 8.2.1. Триумф ньютоновской астрономии и... Первая брешь в ней
- 8.2.2. Формирование астрофизики: проблема внутреннего строения звезд
- 8.3. Биология
- 8. 3.1. Утверждение теории эволюции ч. Дарвина
- 8.3.2. Становление учения о наследственности (генетики)
- 9.1.2. Создание а. Эйнштейном специальной теории относительности
- 9.2. Создание и развитие общей теории относительности
- 9.2.1. Принципы и понятия эйнштейновской теории гравитации
- 9.2.2. Экспериментальная проверка общей теории относительности
- 9.2 3. Современное состояние теории гравитациии ее роль в физике
- 9.3. Возникновение и развитие квантовой физики
- 9.3.1. Гипотеза квантов
- 9.3.2. Теория атома и. Бора. Принцип соответствия
- 9.3.3. Создание нерелятивистской квантовой механики
- 9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности
- 9.4. Методологические установки неклассической физики
- 10. Мир элементарных частиц
- 10.1. Фундаментальные физические взаимодействия
- 10.1.1. Гравитация
- 10.1.2. Электромагнетизм
- 10.1.3. Слабое взаимодействие
- 10.1.4. Сильное взаимодействие
- 10.1.5. Проблема единства физики
- 10.2. Классификация элементарных частиц
- 10.2.1. Характеристики субатомных частиц
- 10.2.2. Лептоны
- L0.2.3. Адроны
- 10.2.4. Частицы - переносчики взаимодействий
- 10.3. Теории элементарных частиц
- 10.3.1. Квантовая электродинамика
- 10.3.2. Теория кварков
- 10.3.3. Теория электрослабого взаимодействия
- 10.3.4. Квантовая хромодинамика
- 10.3.5. На пути к Великому объединению
- Современная астрономическая картина мира
- 11. Особенности астрономии XX в.
- 11.1. Изменения способа познания в астрономии хх в.
- 11.2. Новая астрономическая революция
- 11.3. Солнечная система
- 11.3.1. Планеты и их спутники
- 11.3.2. Строение планет
- 11.3.3. Происхождение планет
- 11.3.4. Химический состав вещества во Вселенной
- 11.4. Звезды
- 11.4.1. Звезда - газовый шар
- 11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»
- 11.5. Острова Вселенной: галактики
- 11.5.1. Общее представление о галактиках и их изучении
- 11.5.2. Наша Галактика - звездный дом человечества
- 11.5.3. Межзвездная среда
- 11.5.4. Понятие Метагалактики
- 11.6. Вселенная в целом
- 11.6.1. Особенности современной космологии
- 11.7. Эволюция Вселенной
- 11.7.1. Модель горячей Вселенной
- 11.7.2. Большой Взрыв: инфляционная модель
- 11.7.3. Первые секунды Вселенной
- 11.7.4. От первых минут Вселенной до образования звезд и галактик
- 11.7.5. Образование тяжелых химических элементов
- 11.7.6. Сценарии будущего Вселенной
- 11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- 11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности
- 11.8.2. Типы контактов с внеземными цивилизациями
- 11.8.3. Поиски внеземных цивилизаций
- 11.9. Методологические остановки «неклассической» астрономии XX в.
- Современная биологическая картина мира
- 12. Особенности биологии XX в.
- 12.1. Век генетики
- 12.1.1. Хромосомная теория наследственности
- 12.1.2. Создание синтетической теории эволюции
- 12.1.3. Революция в молекулярной, биологии
- 12.1.4. Методологические установки современной биологии
- 13. Мир живого
- 13.1. Особенности живых систем
- 13.1.1. Существенные черты живых систем
- 13.1.2. Основные уровни организации живого
- 13.2. Возникновение жизни на Земле
- 13.2.1. Развитие представлений о происхождении жизни
- 13.2.2. Возникновение жизни
- 13.3. Развитие органического мира
- 13.3.1. Основные этапы геологической истории Земли
- Геологические эры Земли:
- 13.3.2. Начальные этапы эволюции жизни
- 13.3.3. Образование царства растений и царства животных
- 13.3.4. Завоевание суши
- 13.3.5. Основные пути эволюции наземных растений
- 13.3.6. Пути эволюции животных
- 14. Возникновение человека и общества (антропосоциогенез)
- 14.1. Естествознание XVII— первой половины xiXв. О происхождении человека
- 14.2. Предпосылки антропосоциогенеза
- 14.2.1. Абиотические предпосылки
- 14.2.2. Биологические предпосылки
- 14.3. Возникновение труда
- 14.3.1. «Человек умелый»
- 14.3.2. Развитие древнейшей техники человека
- 14.4. Становление социальных отношений
- 14.4.1. Биологические предпосылки социальных отношений
- 14.4.2. Возникновение разделения труда
- 14.5. Генезис сознания и языка.
- 14.5.1. Раскрытие тайны происхождения сознания
- 14.5.2. Генезис языка
- Часть третья естествознание на пороге XXI в.
- 15. Теория самоорганизации (синергетика)
- 15.1. От моделирования простых систем к моделированию сложных
- 15.2. Характеристики самоорганизующихся систем
- 15.2.1. Открытость
- 15.2.2. Нелинейность
- 15.2.3. Диссипативность
- 15.3. Закономерности самоорганизации
- 16. Глобальный эволюционизм
- 17. На пути к постнеклассической науке XXI в.
- Заключение Наука и будущее человечества Естествознание как революционизирующая сила цивилизации
- Наука и квазинаучные формы духовной культуры
- Контрольные вопросы
- Литература
- Терминологический словарь
- Именной указатель
- Основные сокращения и обозначения
- Соотношения между некоторыми физическими величинами
- Содержание
- 1. Накопление рациональных знаний в системе первобытного сознания 12
- 2. Наука в цивилизациях древности 20
- 3. Создание первой естественнонаучной картины мира в древнегреческой культуре 39
- 4. Естествознание в эпоху средневековья 64
- 5. Познание природы в эпоху возрождения 75
- 6. Научная революция XVII в.: возникновение классической механики 84
- 7. Естествознание XVIII -первой половины XIX в. 93
- 8. Естествознание второй половины XIX в.: на пути к новой научной революции 123
- 9. Научная революция в физике начала XX в.: возникновение релятивистской и квантовой физики 135
- 10. Мир элементарных частиц 150
- 11. Особенности астрономии XX в. 164
- 12. Особенности биологии XX в. 191
- 13. Мир живого 195
- 14. Возникновение человека и общества (антропосоциогенез) 210
- 15. Теория самоорганизации (синергетика) 225
- 16. Глобальный эволюционизм 229
- 17. На пути к постнеклассической науке XXI в. 230