logo search
Палеогео / Концепции современного естествознания / Гусейнов_ Концепции современного естествознания Учебник_Гусейханов Раджабов_2007 6-е изд

14.4. Проблемы происхождения жизни во Вселенной

Река времени в своем стремленъи Уносит все дела людей. И топит в пропасти забвенья Народы, царства и царей.

Г. Державин

Представление о наличии жизни во Вселенной исторически менялось и всегда интересовало человечество. Взгляды о бесчисленности обитаемых миров получили широчайшее распространение в XVIII-XIX вв. Особую известность и популярность завоевали труды Б. Фонтенеля, К. Фламмариона и др. В эту эпоху населенными считались практически все небесные тела —

367

от Луны и планет до комет и Солнца. Об обитателях Луны, например, писали Кеплер, Ньютон, а позднее, уже на пороге XIX в., У. Гершель допускал возможность существования жизни на Солнце. Проблема происхождения жизни как предмет научных исследований возникла во второй половине XIX в. Как отмечал М. Кельвин, еще Ч. Дарвин совершенно отчетливо ставил вопрос о естественном происхождении жизни на Земле в отдаленном прошлом и говорил об отсутствии условий для этого теперь, при наличии развитой жизни.

В начале XX в., однако, возобладало мнение, что жизнь — привилегия лишь планет типа Земля. А ставшая общепринятой космологическая теория Джинса, согласно которой планеты возникают в результате тесного сближения двух звезд — события очень редкого, привела к заключению о крайней редкости планетных систем и тем более жизни в звездном мире.

В 20-х гг. XX в. существенно изменилась астрономическая картина мира, и в том же десятилетии в трудах А. И. Опарина в СССР и Дж. Холдейна в Англии стала формироваться первая научная концепция происхождения жизни.

Солнце, в соответствии с расчетами, основанными на современной теории эволюции звезд, образовалось около 5 млрд лет назад (через 8-10 млрд лет после звезд 1-го поколения) из газопылевой среды, уже обогащенной тяжелыми элементами. П. Дебай, а также В. Г. Фесенков подчеркнули, что у звезд 1-го поколения, составляющих 90% всех звезд Галактики, не может быть земноподобных планет, а следовательно, и жизни. Однако остальные 10%, составляющие население последующих поколений звезд Галактики (это ≈ 1010 объектов), могут обладать планетами типа Земля. Планеты рождаются в ходе самого процесса звездообразования, и планетные системы могут быть у значительной доли звезд — до 2/3 общего числа звезд 2-го и последующих поколений могут обладать земноподобными планетами. Это значит, что необходимые для возникновения и развития жизни условия выполняются в галактиках, подобных нашей, не при уникальном сочетании редких событий, а как

368

типичное явление. В пользу справедливости этого вывода свидетельствует медленное (обычно всего несколько км/с на экваторе) вращение большинства солнцеподобных звезд, ибо оно может быть истолковано как свидетельство наличия у них, как и у Солнца, планет, несущих основную (у них 98%) долю вращательного момента количества движения всей системы. Следовательно, образование земноподобных планет — естественный результат общегалактического космогонического процесса.

Коль скоро есть все основания предполагать, что планетных систем, сходных с Солнечной, в Галактике насчитывается несколько миллиардов, вполне естественно принять, что процесс жизни и ее эволюции там в общих, чертах по своему характеру сходен с тем, что было на Земле, Разумеется, не на каждой планете возможно зарождение и развитие жизни. Для этого необходимо учесть:

  1. Планеты, на которых возможно зарождение и развитие жизни, не могут обращаться вокруг звезды слишком близко или слишком далеко. Необходимо, чтобы температуры их поверхностей были благоприятны для развития жизни. Учитывая, однако, что одновременно со звездой должно образоваться сравнительно большое число планет (скажем, ~10), с большой вероятностью можно ожидать, что хотя бы одна или две планеты будут обращаться на расстоянии, при котором температура лежит в нужных пределах.

  2. Массы образовавшихся планет не должны быть ни слишком большими, ни слишком маленькими. В первом случае гигантские атмосферы этих планет, богатые водородом и его соединениями, исключают возможность развития жизни. Во втором случае за время эволюции атмосферы будут рассеиваться (подобно Меркурию). Однако, учитывая сравнительно большое число образующихся планет, можно ожидать, что некоторое, пусть малое, количество их будет обладать нужной массой. При этом необходимо, чтобы такие планеты одновременно удовлетворяли первому условию. Заметим, что первое и второе условия не являются независимыми.

369

  1. Высокоорганизованная жизнь может быть только на планетах, обращающихся вокруг достаточно старых звезд, возраст которых насчитывает несколько миллиардов лет.

  2. Звезда в течение нескольких миллиардов лет не должна существенно менять своей светимости. И этому условию удовлетворяет большинство интересующих нас звезд.

  3. Звезда не должна быть двойной или кратной, ибо в противном случае орбитальное движение планет было бы существенно отлично от кругового, и резкие, если не катастрофические, изменения температуры поверхности планеты исключили бы возможность развития на ней жизни.

Другой, хотя и косвенный, но важный (и видимо, типичный для любой звездной системы) путь воздействия Галактики на происхождение и развитие жизни на Земле, — возмущающее влияние притяжения звезд, проходящих в соседстве с Солнцем, на кометы из "свит Солнца". На периферии Солнечной системы, возможно, движется до 1011 комет. Наша планета за свою историю испытала, по подсчетам ученых, около сотни столкновений с кометами; их суммарная масса могла составить достаточно заметную величину, равную примерно 1% массы земной атмосферы. Кометы богаты сложными химическими соединениями, включая органические, видимо, еще межзвездного происхождения, а также образовавшимися в период формирования солнечной системы. Их вклад в копилку первоначальной земной органики — основы предбиологической эволюции — мог быть существенным.

Совокупность свойств, наблюдаемых у нашей Вселенной (физическое состояние, химический состав, структура, расширение и связанное с ним красное смещение в спектрах далеких объектов), необходима для обеспечения возможности возникновения и существования в ней жизни. Итак, во Вселенной, естественно, возникают общие предпосылки для появления и развития жизни. Речь может и должна идти о жизни в тех ее рамках, в каких она известна нам. Именно поэтому специально обращалось внимание на необходимость для возникновения жизни предварительного образования во Вселенной С, О, N, Р и

370

др., а также тяжелых элементов, без которых жизнь, во всяком случае известного нам типа, совершенно немыслима. Может быть, мы еще не заметили роли и даже существования некоторых фундаментальных для жизни космических факторов, открытие которых в будущем существенно изменит наши представления о распространенности во Вселенной условий, в которых может появиться жизнь.

ВЫВОДЫ

  1. Среди известных гипотез происхождения жизни наиболее распространены: креационизм, самопроизвольное возникновение, вечное существование, панспермия, биохимический путь.

  2. Для научного изучения происхождения жизни необходимы прежде всего данные о физико-химических условиях на ранней Земле. Такие данные связаны как с геологической эволюцией планеты, так и с эволюцией химических элементов Солнечной системы и солнечной активностью.

  1. Из большого числа химических элементов для жизни необходимы только 16, а водород, углерод, кислород и азот составляют почти 99% живой материи. Уникальными свойствами обладает углерод, и наша жизнь называется углеродной, или органической. Четырехвалентность углерода приводит к огромному числу его соединений, которыми занимается органическая химия. Углерод образует сложные молекулы, представляющие собой кольца и цепи, обеспечивающие разнообразие органических соединений.

  2. Аминокислоты — важный для жизни класс органических соединений. В живых организмах они используются для синтеза белков: растения могут синтезировать их из простых веществ, а в животные организмы они должны поступать с пищей, поэтому их называют незаменимыми. Из четырех нуклеотидов построены и другие крупные молекулы — нуклеиновые кислоты, тоже входящие в состав живой клетки. Нуклеиновые кислоты представляют собой двухцепочечные молекулы.

  3. Современные научные гипотезы происхождения жизни связаны с образованием в определенных условиях более слож-

371

неорганизованных молекул-коагулянтов, гелей коацерватов. У этих коллоидных образований, как считали Опарин и Холдейн, на поверхности могут происходить процессы, напоминающие метаболизм живых организмов. Коацерваты способны делиться на части, увеличиваться в размерах, поглощать более простые молекулы. Гипотеза Опарина—Холдейна проверялась на установке Меллера, где искровой разряд пропускался через смесь метана, аммиака, водорода и воды, что имитировало условия первичной Земли. Были синтезированы простейшие аминокислоты. Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самопроизводящие системы, построенные из биополимеров — белков и нуклеиновых кислот.

Вопросы для контроля знаний

  1. Какие гипотезы происхождения живой материи вам известны? Дайте оценку гипотезе панспермии.

  2. Какими признаками отличается живое от неживого? Какие аналогии между живой и неживой материей можно провести?

  3. Охарактеризуйте гипотезу Опарина-Холдейна.

  4. В чем состояли главные предположения Л. Пастера относительно возникновения жизни?

  5. Дайте определение жизни исходя из разных позиций.

  6. Охарактеризуйте физико-химические условия на ранней Земле до появления реакций фотосинтеза и свяжите их с существующими гипотезами происхождения жизни.

  7. Как вы оцениваете вероятность наличия жизни во Вселенной?

  8. Можно ли отнести вирусы к живым организмам? Обоснуйте ответ.

  9. Какую роль играют молекулы ДНК в передаче наследственности и как был расшифрован генетический код?

  1. Какую функцию выполняет молекула ДНК?

  2. Как осуществляется процесс воспроизведения информации, хранимой в ДНК?

  3. Кто и когда раскрыл структуру носителя наследственности?

  4. Что является предметом исследования генной инженерии?

  5. Охарактеризуйте структуру молекулы ДНК.

  6. Какой первый препарат был получен с помощью генной инженерии?

372

  1. Назовите основные достижения генной инженерии.

  2. Что означает утверждение: наследственный аппарат не стареет?

  3. Чем характеризуется индивидуальная последовательность ДНК в геноме человека?

  4. Можно ли с помощью анализа структуры генома провести идентификацию личности?

  5. Что дает генная инженерия для криминалистики?

373