logo
дгту / синельникова / ксе 1

1. Принцип симметрии

Симметрия переводится с греческого как «соразмерность, пропорциональность, одинаковость в расположении частей». Часто проводятся параллели: симметрия и уравновешенность, симметрия и гармония, симметрия и совершенство.

Согласно современным представлениям, симметрию можно определить примерно так: «Симметричным называется такой предмет, который можно как-то изменять, получая в результате то же, с чего начали». (Р. Фейнман).

Таким образом, симметрия предполагает неизменность объекта (каких-то свойств объекта) по отношению к каким-нибудь преобразованиям, каким-нибудь операциям.

Понятие симметрии имеет определенную «структуру» состоящую из трех факторов: объект или явление, симметрия которых рассматривается; изменение (преобразование), по отношению к которому рассматривается симметрия; инвариантность (неизменность, сохранение) каких-то свойств объекта, выражающая рассматриваемую симметрию.

Инвариантность существует не сама по себе, не вообще, а лишь по отношению к определенным преобразованиям.

С другой стороны, изменения (преобразования) представляют интерес постольку, поскольку что-то при этом сохраняется.

Иными словами, без изменений не имеет смысла рассматривать сохранение, равно как без сохранения исчезает интерес к изменениям.

Симметрия выражает сохранение чего-то при каких-то изменениях или, иначе, сохранение чего-то, несмотря на изменения.

Формы симметрии.

В физике общепринято выделять две формы симметрии: геометрическую и динамическую.

Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии.

Примерами геометрических симметрии являются: однородное пространство и временя, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета.

Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии.

К динамическим симметриям относят симметрии внутренних свойств объектов и процессов, например симметрии электрического заряда. Геометрические и динамические симметрии можно рассматривать еще в одном аспекте, как внешние и внутренние симметрии.

К основным формам геометрической симметрии, прежде всего, относятся:

зеркальная симметрия (симметрия отражения);

поворотная симметрия (центральная симметрия);

трансляционная симметрия (симметрия повторения).

Зеркальной называют симметрию, имеющую плоскость, линию, или временной раздел двух совершенно одинаковых относительно, друг друга частей одного целого (например, цветной узор крыльев бабочки).

Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента.

В зависимости от повторяющегося кругового сектора а (в угловых градусах) определяется порядок поворотной симметрии п. Например, для снежинки с α = 60° порядок поворотной симметрии п = 6.

Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент.

Преобразования симметрии могут быть и реальными, и мысленными (пространственный сдвиг, вращение, зеркальное отражение в пространстве, зарядовое сопряжение - замена частицы на античастицу).

Свойства симметрии.

Особое внимание к вопросам симметрии было привлечено после того, как немецкий математик Амалии Эмми Нетер (Noether) (1882-1935) сформулировала в 1918г. фундаментальную теорему теоретической физики, установившую связь между симметрией свободного пространства, симметрией времени и законами сохранения в механике.

Пространство можно считать свободным, если вблизи нет тел большой массы. Таковым является пространство на значительном расстоянии от Земли и других планет и звезд.

Важным свойством свободного пространства являются однородность и изотропность.

Под однородностью пространства понимают тот факт, что в этом пространстве нет особых точек, обладающих особыми свойствами. Из однородности пространства вытекает закон сохранения импульса, из изотропности пространства – закон сохранения момента импульса.

Под однородностью времени понимается тот факт, что любые явления, происходящие в разное время, но при одних и тех же условиях, протекают совершенно одинаково. Из этого утверждения вытекает закон сохранения энергии.

Важным подтверждением универсальной значимости законов сохранения является то, что они вытекают из самых общих представлений о симметрии, с одной стороны, а также законов движения и взаимодействий – с другой.

В частности, Э. Нётер при доказательстве своей знаменитой теоремы провела исследование широко используемого в аналитической механике интеграла действия:

где L (q, q, t) – функция Лагранжа, с помощью которой описывается некоторая система;

q, q, t – соответственно обобщенные координаты (скорости) и время.

В соответствии с вариационным принципом действие S имеет экстремум вблизи истинной траектории, вариация действия вдоль истинной траектории остается неизменной, т.е. δS = 0.

Вариации действия δS зависят от вариации времени δt и вариации координат δq.

Дифференцируя подинтегральное выражение по t и q и приравнивая его к нулю, поскольку δS = 0, имеем сумму двух дифференциалов:

Если рассматривать только изменение по времени, то получим, что энергия системы (выраженная через функцию Лагранжа и ее производные) есть величина постоянная. Тем самым симметрии преобразования времени следует закон сохранения механической (кинетической плюс потенциальной) энергии.

Если преобразование не затрагивает времени (δt = 0), а учитывается только однородный пространственный сдвиг (δq=0), то получим в качестве сохраняющейся величины вектор импульса материальной системы (который следует из преобразованной функции Лагранжа). Аналогично выводится закон сохранения момента импульса.

Кроме того, во всех процессах, происходящих в мире элементарных частиц, выполняется также закон сохранения электрического заряда.

Принцип симметрии, лежащий в основе этого закона сохранения, оказывается более тонким, нежели рассмотренные выше симметрии физических законов относительно пространственно-временных преобразований, выражающихся в виде законов сохранения энергии, импульса, момента импульса.

Закон сохранения электрического заряда является следствием так называемой калибровочной инвариантности.

Калибровочная инвариантность – один из важнейших принципов теории поля. Можно показать, что если записать интеграл действия S для системы «заряд–поле» и провести калибровочное преобразование, то действие остается неизменным, а вариация действия будет равна нулю, если заряд является постоянной величиной.

Инвариантность действия при преобразовании калибровки будет иметь место при условии сохранения заряда, т.е. симметрия калибровочного преобразования полей напрямую связана с законом сохранения заряда. Эта общая закономерность справедлива для полей любого характера.

Исследование реакций с участием элементарных частиц и античастиц и процессов их распада привело к открытию некоторых новых свойств симметрии, в том числе симметрии относительно зарядового сопряжения.

Если в уравнении какой-либо реакции каждую частицу заменить на античастицу, то получится уравнение, описывающее новую реакцию. Эта операция называется зарядовым сопряжением.

Еще большее значение симметрия играет в квантовой механике. Если здесь установлен принцип какой-либо симметрии, то окажется, что он всегда позволяет вывести соответствующий закон сохранения.