logo
Проявление симметрии в различных формах материи

Биологические дроби

Винтовые оси симметрии видны в расположениях чешуек шишек и укладке коры пальм, структуре кост­ной ткани и в побегах различных растений. На стебле подсолнечника явно видна винтовая ось пятого порядка. Каждый вновь выросший лист связан с пре­дыдущим поворотом на 72°, а при повороте та 360° листья перемещаются на целую величину трансляции. По правилам, принятым в кристаллографии, такую ось следует обозначать 51­­. Но в ботанике принято представлять винтовые оси в виде дроби, в зна­менателе которой стоит число оборотов в листовом цикле (количество оборотов вокруг стебля для перехода от нижнего листа к вышестоящему, расположенному над ним), а в числителе — число листьев в этом цик­ле. В соответствии с этим расположение листьев у под­солнечника задается дробью 5/1.

У растений существуют только определенные, строго фиксированные оси, но в большинстве своем не такие, как у кристаллов. Так, если злаки, липа, бук, береза образуют ось 21 (ботаническая дробь 2/1), осока, тюль­пан, орешник, виноград и ольха — 31 (3/1), то дуб, виш­ня смородина, слива имеют ось 52 (5/2), капуста, ма­лина, груша, тополь, редька, лен, барбарис — 83 (8/3), а ель, миндальник, облепиха и жасмин — 1З5 (13/5). Для хвойных шишек типичны оси 218 (21/8), 3413 (34/13) и 5521 (55/21).

Почему именно такие оси, а не другие — неизвестно. Но уже давно было подмечено, что биологические дро­би не произвольны, а представляют собой члены двух последовательностей, составленных из чисел Фибо­наччи. Их ввел в математику итальянский купец Леонардо из Пизы по прозвищу Фибоначчи, что озна­чает сын Боначчо. В его «Книге абака» приведена оригинальная задача о кроликах, решение которой принадлежит самому Фибо­наччи. В задаче спрашивалось, сколько пар кроликов мо­жет произойти от одной пары в течение года, если каж­дая пара каждый месяц порождает новую пару, которая со второго месяца тоже становится производителем, и кролики не дохнут.

Решение этой задачи сопряжено с появлением числового ряда 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. ... Эти числа и называются числами Фибоначчи.

Биологические дроби, описывающие винтовую сим­метрию растений, составлены из членов двух рядов. В обоих рядах числители есть числа Фибоначчи, начиная с четвертого члена — двойки. Знаменатели рядов раз­личны. В первом числа Фибоначчи начинаются с треть­его числа, а во втором — со второго.

Итак, первый ряд:

2/1, 3/2, 5/3, 8/5, 13/8, 21/13…

Второй ряд:

2/1, 3/1, 5/2, 8/3, 13/5, 21/8…

До сих пор совершенно непонятно, почему сим­метричное винтовое расположение листьев или чешуек в шишках точно связано с величиной определенного от­ношения, присутствующего в пространственных объек­тах, производящих особое эстетическое впечатление? Здесь можно высказать только самое общее утвержде­ние, что формирование эстетических критериев человека происходит под влиянием пространственных закономер­ностей природных объектов. Однако это утверждение не дает конкретный ответ на поставленный вопрос.