11.Бактреиофаги хар-ка
Бактериофаги– вирусы бактерий. История открытия бактериофага связана с именами Н.Ф. Гамалеи, наблюдавшего спонтанный лизис сибиреязвенных бактерий в 1898г. Английский бактериолог Ф. Туорт описал способность фильтрата стафилококков растворять свежую культуру этих же бактерий (1915г.). Французский ученый Ф.Д, Эррель подробно изучил взаимодействие фага и бактерий и сделал заключение, что открытый им литический агент является вирусом бактерий и назвал его «бактериофагом» - пожирателем бактерий.
Бактериофаги широко распространены: они выявлены у большинства бактерий, а также у других микроорганизмов, например, у грибов и поэтому их часто называют фагами. Наиболее детально изучена структура крупных фагов, к которым относятся фаги E. Coli (Т2, Т4, Т6). Они состоят из головки икосаэдрического типа, в которой заключена или ДНК, или РНК. Большинство фагов содержат двунитевую ДНК, замкнутую в кольцо. Хвостовой отросток имеет внутри полый цилиндрический стержень, сообщающийся с головкой, а снаружи – чехол, способный к сокращению наподобие мышцы. Чехол присоединен к воротничку, окружающему стержень около головки. Хвостовой отросток заканчивается шестиугольной базальной пластинкой с шипами от которых отходят нитевидные структуры – фибриллы.
По морфологии фаги подразделяются на 6 групп: 1) фаги с длинным отростком, чехол которого сокращается; 2) фаги с длинным отростком, чехол которого не сокращается; 3) фаги с короткими отростками; 4) фаги с аналогом отростка; 5)фаги без отростка; 6) нитевидные фаги.
Бактериофаги содержат группоспецифические и типоспецифические антигены, обладают иммуногенными свойствами, т.е. синтезируют специфические антитела в организме.
По специфичности взаимодействия различают следующие бактериофаги: 1) поливалентные – взаимодействуют с родственными видами бактерий; 2) моновалентные – взаимодействуют с бактериями определенного вида; 3) типовые – взаимодействуют с отдельными типами бактерий данного вида.
Взаимодействие фагов с бактериями может протекать: 1) по продуктивному типу – образуется фаговое потомство и бактерии лизируются; 2) по абортивному типу – фаговое потомство не образуется и бактерии сохраняют свою жизнедеятельность; 3) по интегративному типу – геном фага встраивается в хромосому бактерии и сосуществует с ней.
В зависимости от типа взаимодействия различают вирулентные и умеренные бактериофаги.
Вирулентные бактериофаги взаимодействуют с бактерией по продуктивному типу. Адсорбция фагов на бактериальной клетке происходит при наличии комплементарных рецепторов в ее клеточной стенке. На бактериях, лишенных клеточной стенки бактериофаги не адсорбируются. Фаги, имеющие хвостовой отросток, прикрепляются к бактериальной клетке свободным концом отростка (фибриллами, базальной пластинкой). В результате активации АТФ чехол хвостового отростка сокращается и стержень с помощью лизоцима, растворяющего прилегающий фрагмент клеточной стенки как бы просверливает оболочку клетки. При этом ДНК фага, содержащаяся в его головке, проходит в форме нити через канал хвостового стержня и инъецируется в клетку, а капсид фага остается снаружи бактерии. Инъецированная внутрь бактерии нуклеиновая кислота подавляет биосинтез компонентов клетки, заставляя ее синтезировать нуклеиновую кислоту и белки фага, затем происходит самосборка частиц фага. В результате изменения внутриклеточного осмотического давления и действия фагового лизоцима происходит разрушение оболочки, лизис бактерии и выход фагов из нее.
12. Химический состав бактериальной клетки
Бактериальная клетка на 80—90 % состоит из воды, и только 10% приходится на долюсухого вещества. Водав клетке находится в свободном или связанном состоянии. Она выполняет механическую роль в обеспечении тургора, участвует в гидролитических реакциях. Удаление воды из клетки путем высушивания приводит к приостановке процессов метаболизма, прекращению размножения. Высушивание микроорганизмов в вакууме из замороженного состояния (лиофилизация) прекращает размножение микробов и способствует длительному их сохранению.
Состав сухого вещества распределен следующим образом:
52 % составляют белки, 17 % — углеводы, 9 % - липиды, 16 % - РНК, 3 % - ДНК и 3 % — минеральные вещества.
Белкиявляются ферментами, а также составной частью клетки, входят в состав цитоплазматической мембраны (ЦПМ) и ее производных, клеточной стенки, жгутиков, спор и некоторых капсул. Некоторые бактериальные белки являются антигенами и токсинами бактерий. В состав белков бактерий входят отсутствующие у человека Д-аминокислоты, а также диаминопимелиновая кислота.
Углеводы представлены в бактериальной клетке в виде моно-, ди-, олигосахаров и полисахаридов, а также входят в состав комплексных соединений с белками, липидами и другими соединениями. Полисахариды находятся в составе некоторых капсул, клеточной стенки; крахмал и гликоген являются запасными питательными веществами. Некоторые полисахариды принимают участие в формировании антигенов.
Липидыили жиры входят в состав ЦПМ и ее производных, клеточной стенки грамотрицательных бактерий, а также служат запасными веществами, входят в состав эндотоксина грамотрицательных бактерий, в составе ЛПС формируют антигены. В бактериальных жирах преобладают длинноцепочечные (С 14—С18) насыщенные жирные кислоты и ненасыщенные жирные кислоты, содержащие одну двойную связь. Сложные липиды представлены фосфатидилинозитом. фосфатидилглицерином и фосфатидилэтаноламином. У некоторых бактерий в клетке находятся воски, эфиры миколовой кислоты. Микоплазмы — единственные представители царства Procaryotae, имеющие в составе ЦПМ стеролы. Остальные бактерии в составе ЦПМ и ее производных не имеют стеролов.
Нуклеиновые кислоты. В бактериальной клетке присутствуют все типы РНК: иРНК, тРНК,рРНК.Пуриновые и пиримидиновые нуклеотиды — это те строительные блоки, из которых синтезируются нуклеиновые кислоты. Кроме того, пуриновые и пиримидиновые нуклеотиды входят в состав многих кофермен-тов и служат для активации и переноса аминокислот, моносахаров, органических кислот.
ДНКвыполняет в бактериальной клетке наследственную функцию. Молекула ДНК построена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы (рис. 3.1, а). Азотистые основания представлены пуринами(аденин, гуанин) и пиримидинами (тимин, цитозин). Каждый нуклеотид обладает полярностью. У него имеется дезоксирибозный З'-конец и фосфатный 5'-конец. Нуклеотиды соединяются в полинуклеотидную цепочку посредством фосфодиэфирных связей между 5'-кон-цом одного нуклеотида и З'-концом другого. Сцепление между двумя цепями обеспечивается водородными связями между комплементарными азотистыми основаниями: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом из концов линейной молекулы ДНК расположен 5'-конец одной цепи и З'-конец другой цепи. Процентное содержание количества гуанинцитозин(ГЦ)-пар в ДНК определяет степень родства между бактериями и используется при определении таксономического положения бактерий.
Минеральные вещества обнаруживаются в золе, полученной после сжигания клеток. В большом количестве представлены минеральные вещества: N, S, Р, Са, К, Mg, Fe, Mn, а также микроэлементы: Zn, Си, Со, Ва.
Азот входит в состав белков, нуклеотидов, коферментов. Сера входит в виде сульфгид-рильных групп в структуру белков. Фосфор в виде фосфатов представлен в нуклеиновых кислотах, АТФ, коферментах. В качестве активаторов ферментов используются ионы Mg, Fe, Mn. Ионы К и Mg необходимы для активации рибосом. Са является составной частью клеточной стенки грамположительных бактерий. У многих бактерий имеются сидерохро-мы, которые обеспечивают транспортировку ионов Fe внутрь клетки в виде растворимых комплексных соединений
13. Потребность прокариот в питательных веществах. Источники углерода и азота.
Прокариоты - это надцарство организмов, которые имеют свои особенности. Клетки прокариот не имеют оформленного ядра и других внутренних мембранных органелл. К прокариотам относят архебактерии и эубактерии. Они различны по месту обитания, и особенностям метаболизма.
1. Источники углерода
Все соединения, из которых построены живые организмы - это соединения углерода. Углероду принадлежит основная роль в конструктивном метаболизме. Прокариоты способны воздействовать на любое углеродное соединение, т.е. использовать его в своем в своем метаболизме. В зависимости от источника углерода все прокариоты делятся на две группы: автотрофы, к которым принадлежат организмы, способные синтезировать все компоненты клетки из углекислоты или других неорганических соединений, и гетеротрофы, источником углерода для конструктивного метаболизма которых служат органические соединения. Следует отметить, что в мире прокариот не существует резкой границы между авто- и гетеротрофными организмами [1, 2, 3].
- 11.Бактреиофаги хар-ка
- 1.1Неорганические соединения углерода
- 1.2.2Ароматические соединения
- 1.2.4Липиды, белки и другие вещества
- 2.2Органические соединения азота
- 14. Типы дыхания микроорганизмов.
- 15. Технически важные виды брожения.
- Пропионовокислое брожение и пропионовокислые бактерии
- Муравьинокислое брожение и семейство Enterobacteriaceae
- 16. Рост и размножение бактерий.
- Особенности метаболизма у бактерий состоят в том, что:
- Ферменты бактерий по локализации делятся на 2 группы:
- 18. Фазы размножения бактерий в периодической культуре.
- 20. Микроорганизмы как симбиотические партнёры: мутуализм, комменсализм, паразитизм, антагонизм. Примеры.