logo search
адрено

Список литературы

  1. Steinman L: Elaborate interactions between the immune and nervous systems. Nat Immun 5:575-581, 2004

  2. Elenkov I, Wilder R, Chrousos G, et al: The sympathetic nerve: an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595-638, 2000

  3. Felten D, Felten S, Carlson S, et al: Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 135:755s-765s, 1985

  4. Bellinger D, Lorton D, Felten S, et al: Innervation of lymphoidorgans and implication in development, aging, and autoimmunity. Int J Im munopharmacol 14:329-344, 1994

  5. Felten D, Felten S, Bellinger D, et al: Noradrenergic sympathetic neural interactions with immune system: structure and function. Im­ munol Rev 100:225-260, 1987

  6. Felten D, Felten S: Sympathetic noradrenergic innervation of immune organs. Brain Behav Immun 4:293-300, 1998

  7. Reilly F, McCuskey P, Miller M, et al: Innervation of the periarteriolar lymphatic sheath of the spleen. Tissue Cell 11:121-126, 1979

  8. Berkenbosch F, van Oers J, del Ray A, et al: Corticotropin-releasing factor producing neurons in the rat activated by interleukin-1. Science 238:524-526, 1987

  9. Sapolsky R, River C, Yamamoto G, et al: Interleukin-1 stimulates the secretion of hypothalamic corticotrophin-releasing factor. Science 238:522-524, 1987

  10. unn A: Systemic interleukin-1 administration stimulates hypotha lamic norepinephrine metabolism paralleling the increased plasma corticosterone. Life Sci 43:429-435, 1988

  11. Elenkov I, Kovacs K, Duda E, et al: Presynaptic inhibitory effect of TNF-a on the release of noradrenaline in isolated median eminence. J Neuroimmunol 41:117-120, 1992

  12. Kovacs K, Elenkov I: Differential dependence of ACTH secretion induced by various cytokines on the integrity of the paraventricular nucleus. J Neuroendocrinol 7:15-23, 1995

  13. Katafuchi T, Hori T, Take S: Central administration of interferon- alpha enhances rat sympathetic nerve activity to the spleen. Neurosci Lett 125:37-40, 1991

  14. Paul W: Fundamental Immunology. Lippincott Williams & Wilkins, Philadelphia, PA. (ed 5) 2003

  15. Sanders V, Baker R, Ramer-Quinn S, et al: Differential expression of the 2-adrenergic receptor by Thl and Th2 clones. Implications for cytokine production and B cell help. J Immunol 158:4200-4210, 1997

  16. Feldman R, Hunningshake G, McArdle W: Beta-adrenergic receptor mediated suppression of interleukin 2 receptors in human lympho­ cytes. J Immunol 139:3355-3359, 1987

  17. Bartik M, Brooks W, Roszman T: Modulation of T cell proliferation by stimulation of the beta-adrenergic receptor: lack of correlation between inhibition of T cell proliferation and cAMP accumulation. Cell Immunol 148:408-421, 1993

  18. Bauman G, Bartik M, Brooks W, et al: Induction of cAMP-dependent protein kinase (PKA) activity in T cells after stimulation of the pros taglandin E2 or the beta-adrenergic receptors: relationship between PKA activity and inhibition of anti-CD3 monoclonal antibody-induced T cell proliferation. Cell Immunol 158:182-194, 1994

  19. Minakuchi R, Wacholtz M, Davis L, et al: Delineation of the mecha­ nisms of inhibition of T cell activation by PGE2. J Immunol 145:2616- 2625, 1990

  20. Swanson M, Lee W, Sanders V: IFN-y production by Thl cells generated from naive CD4 + T cells exposed to norepinephrine. J Im­ munol 166:232-240, 2001

  21. Kohm A, Sanders V: Suppression of antigen-specific Th2 cell-depen­ dent IgM and IgGl production following norepinephrine depletion in vitro. J Immunol 162:5299-5308, 1999

  22. Kasprowicz D, Kohm A, Berton M, et al: Stimulation of the B cell receptor, CD 86 (B7-2), and the j32-adrenergic receptor intrinsically modulates the level of IgGl and IgE produced per B cell. J Immunol 165:680-690, 2000

  23. Podojil J, Sanders V: Selective regulation of mature IgGl transcription by CD86 and 2 -adrenergic receptor stimulation. J Immunol 170: 5143-5151, 2003

  24. Podojil J, Kin N, Sanders V: CD86 and 2 -adrenergic receptor sig­ naling pathways, respectively increase Oct-1 and OCA-B expression and binding to the 3'-IgH enhancer in B cells. J Biol Chem 279:23394- 23404, 2004

  25. Roper R, Graf B, Phipps R: Prostaglandin E2 and cAMP promote B lymphocyte class switching to IgGl. Immunol Lett 84:191-198, 2002

  26. Galizzi J, Cabrillat H, Rousset F, et al: IFN-7 and prostaglandin E2 inhibit IL-4 induced expression of Fc epsilon R2/CD23 on B lympho­cytes through different mechanism without altering binding of IL-4 to its receptor. J Immunol 141:1982-1988, 1988

  27. Kohm A, Mozaffarian A, Sanders V: B cell receptor and the 2 - adrenergic receptor-induced regulation of B7-2 (CD86) expression in B cells. J Immunol 168:6314-6322, 2002

  28. Podojil J, Sanders V: CD86 and /32-adrenergic receptor stimulation regulates B-cell activity cooperatively. Trends Immunol 26:180-185, 2005

  29. Bolton P, Lefevre P, McDonald D: Salmeterol reduces early and late-phase plasma leakage and leukocyte adhesion in rat airways. Am J Respir Crit Care Med 155:1428-1435, 1997

  30. Panina-Bordignon P, Mazzeo D, Lucia P, et al: /32-agonists prevent Thl development by selective inhibition of interleukin 12. J Clin Invest 100:1513-1519, 1997

  31. Wahle M, Kolker S, Krause A, et al: Impaired catecholaminergic signaling of B lymphocytes in patients with chronic rheumatic dis­ eases. Ann Rheum Dis 60:505-510, 2001

  32. Wahle M, Pierer M, Krause A, et al: Decreased catecholamine-induced cell death in B lymphocytes from patients with rheumatoid arthritis. Ann NY Acad Sci 966:425-428, 2002

  33. Pugin J, Verghese G, Widmer M, et al: The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27:304-312, 1999

  34. Barnett C, Moore E, Patrick D, et al: /3-adrenergic stimulation down regulates neutrophil priming for superoxide generation, but not elas tase release. J Surg Res 70:166-170, 1997

  35. Harvath C, Robbins J, Russell A, et al: cAMP and human neutrophil chemotaxis. Elevation of cAMP differentially affects chemotactic re­sponsiveness. J Immunol 146:224-232, 1991

  36. Silvestri M, Oddera S, Cantero S, et al: 2 agonist induced inhibition of neutrophil chemotaxis is not associated with modification of LFA-1 and MAC-1 expression or with impairment of PMN antibacterial activity. Resp Med 93:416-423, 1999

  37. Maris N, van der Sluijs K, Florquin S, et al: Salmeterol, a 2 -receptor agonist, attenuates lippolysaccharide-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol 286:L1122-L1128, 2004

  38. Lee E, Smith J, Robertson P, et al: Salmeterol and inhibitors of PDE4 induced apoptosis in neutrophils from asthmatics:  -adrenergic receptor mediated salmeterol activity and additive effects with PDE4 inhibitors, [abstract] Am J Resp Cell Mol Biol 159: A329, 1999

  39. Bowden J, Sulakvelidze I, McDonald: Inhibition of neutrophil and eosinophil adhesion to venules of rat trachea by 2 -adrenergic agonist formoterol. J Appl Physiol 77:397-405, 1994

  40. Zetterlund A, Linden M, Larsson K: Effects of beta2-agonist and bedesonide on interleukin-lbeta and leukotriene B4 secretion: studies of human monocytes and alveolar macrophages. J Asthma 35:565-573, 1998

  41. Severn A, Rapson N, Hunter C, et al: Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immu­ nol 148:3441-3445, 1992

  42. Gu Y, Seidel A: Influence of salbutamol and isoproterenol on the production of TNF and reactive oxygen species by bovine alveolar macrophages and calcitriol differentiated HL-60 cells. Immunopharmacol Immunotoxicol 18:115-128, 1996

  43. Monastra G, Secchi E: Beta-adrenergic receptors mediate in vivo the adrenaline inhibition of lipopolysaccharide-induced tumor necrosis factor release. Immunol Lett 38:127-130, 1993

  44. Sekut L, Champion B, Page K, et al: Anti-inflammatory activity of salmeterol: down-regulation of cytokine production. Clin Exp Immu­ nol 99:461-466, 1995

  45. van der Poll T, Jansen J, Endert E, et al: Noradrenaline inhibit lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production inhuman whole blood. Infect Immun 62:2046-2050, 1994

  46. van der Poll T, Coyle S, Barbosa K, et al: Epinephrine inhibits tumor necrosis factor-a and potentiates interleukin 10 production during human endotoxemia. J Clin Invest 97:713-719, 1996