2.1.Абстрагирование и идеализация. Мысленный эксперимент
Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т.е. научным абстракциям. Получение этих абстракций связано со сложной абстрагирующей деятельностью мышления.
В процессе абстрагирования происходит отход (восхождение) от чувственно воспринимаемых конкретных объектов (со всеми их свойствами, сторонами и т. д.) к воспроизводимым в мышлении абстрактным представлениям о них.
Абстрагирование, таким образом, заключается в мысленном отвлечении от каких-то — менее существенных — свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (или используют термин абстрактное — в отличие от конкретного).
В научном познаний широко применяются, например, абстракции отождествления и изолирующие абстракции. Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов (при этом отвлекаются от це-
22
лого ряда индивидуальных свойств, признаков данных предметов) и объединения их в особую группу. Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые виды, роды, отряды и т. д. Изолирующая абстракция получается путем выделения некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «электропроводность» и т. п.).
Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность.
Конечно, в истории науки имели место и ложные, неверные абстракции, не отражавшие ровным счетом ничего в объективном мире (эфир, теплород, жизненная сила, электрическая жидкость и т. п.). Использование подобных «мертвых абстракций» создавало лишь видимость объяснения наблюдаемых явлений. В действительности же никакого углубления познания в этом случае не происходило.
Развитие естествознания повлекло за собой открытие все новых и новых действительных сторон, свойств, связей объектов и явлений материального мира. Необходимым условием прогресса познания стало образование подлинно научных, «не вздорных» абстракций, которые позволили бы глубже познать сущность изучаемых явлений. Процесс перехода от чувственно-эмпирических, наглядных представлений об изучаемых явлениях к формированию определенных абстрактных, теоретических конструкций, отражающих сущность этих явлений, лежит в основе развития любой науки.
Мысленная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией. Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований.
В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в меха-
23
нике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения. Причем подобная абстракция позволяет заменить в исследовании самые различные реальные объекты: от молекул или атомов при решении многих задач статистической механики и до планет Солнечной системы при изучении, например, их движения вокруг Солнца.
Изменения объекта, достигаемые в процессе идеализации, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действительности неосуществимыми. Примером может служить введенная путем идеализации в физику абстракция, известная под названием абсолютно черного тела. Такое тело наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя. Спектр излучения абсолютно черного тела является идеальным случаем, ибо на него не оказывает влияния природа вещества излучателя или состояние его поверхности. А если можно теоретически описать спектральное распределение плотности энергии излучения для идеального случая, то можно кое-что узнать и о процессе излучения вообще. Указанная идеализация сыграла важную роль в прогрессе научного познания в области физики, ибо помогла выявить ошибочность некоторых существовавших во второй половине XIX века представлений. Кроме того, работа с таким идеализированным объектом помогла заложить основы квантовой теории, ознаменовавшей радикальный переворот в науке.
Целесообразность использования идеализации определяется следующими обстоятельствами.
Во-первых, идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности, математического, анализа. А по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов. (Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии).
24
Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.
На эту гносеологическую возможность идеализации обратил внимание Ф. Энгельс, который показал ее на примере исследования, проведенного Сади Карно: «Он изучил паровую машину, проанализировал ее, нашел, что в ней основной процесс не выступает в чистом виде, а заслонен всякого рода побочными процессами, устранил эти безразличные для главного процесса побочные обстоятельства и сконструировал идеальную паровую машину (или газовую машину), которую, правда, также нельзя осуществить, как нельзя, например, осуществить геометрическую линию или геометрическую плоскость, но которая оказывает, по-своему, такие же услуги, как эти математические абстракции. Она представляет рассматриваемый процесс в чистом, независимом, неискаженном виде»4.
В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. Выше уже упоминалось, например, о том, что абстракция материальной точки позволяет в некоторых случаях представлять самые различные объекты — от молекул или атомов до гигантских космических объектов. При этом правильный выбор допустимости подобной идеализации играет очень большую роль. Если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальных точек, то такая идеализация становится недопустимой при изучении структуры атома. Точно так же можно считать материальной точкой нашу планету при рассмотрении ее вращения вокруг Солнца, но отнюдь не в случае рассмотрения ее собственного суточного вращения.
Будучи разновидностью абстрагирования, идеализация допускает элемент чувственной наглядности (обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью). Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, како-
25
вым является мысленный эксперимент (его также называют умственным, субъективным, воображаемым, идеализированным).
Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного (идеализированного) эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществленным на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования. В этом случае мысленный эксперимент выступает в роли предварительного идеального плана реального эксперимента.
Вместе с тем мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него. Эти отличия заключаются в следующем.
Реальный эксперимент — это метод, связанный с практическим, предметно-манипулятивным, «орудийным» познанием окружающего мира. В мысленном же эксперименте исследователь оперирует не материальными объектами, а их идеализированными образами, и само оперирование производится в его сознании, т. е. чисто умозрительно.
Возможность постановки реального эксперимента определяется наличием соответствующего материально-технического (а иногда и финансового) обеспечения. Мысленный эксперимент такого обеспечения не требует.
В реальном эксперименте приходится считаться с реальными физическими и иными ограничениями его проведения, с невозможностью в ряде случаев устранить мешающие ходу эксперимента воздействия извне, с искажением в силу указанных причин получаемых результатов. В этом плане мысленный эксперимент имеет явное преимущество перед экспериментом реальным. В мысленном эксперименте можно абстрагироваться от действия нежелательных факторов, проведя его в идеализированном, «чистом» виде.
В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций проведение реальных экспериментов оказывается вообще невозможным.
26
Этот пробел в познании может восполнить только мысленный эксперимент.
Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы современного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мысленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции.
Реальные эксперименты, в которых невозможно устранить фактор трения, казалось бы, подтверждали господствовавшую в течение тысячелетий концепцию Аристотеля, утверждавшую, что движущееся тело останавливается, если толкающая его сила прекращает свое действие. Такое утверждение основывалось на простой констатации фактов, наблюдаемых в реальных экспериментах (шар или тележка, получившие силовое воздействие, а затем катящиеся уже без него по горизонтальной поверхности, неизбежно замедляли свое движение и в конце концов останавливались). В этих экспериментах наблюдать равномерное не прекращающееся движение по инерции было невозможно.
Галилей, проделав мысленно указанные эксперименты с поэтапным идеализированием трущихся поверхностей и доведением до полного исключения из взаимодействия трения, опроверг аристотелевскую точку зрения и сделал единственно правильный вывод. Этот вывод мог быть получен только с помощью мысленного эксперимента, обеспечившего возможность открытия фундаментального закона механики движения.
Метод идеализации, оказывающийся весьма плодотворным во многих случаях, имеет в то же время определенные ограничения. Развитие научного познания заставляет иногда отказываться от принятых ранее идеализированных представлений. Так произошло, например, при создании Эйнштейном специальной теории относительности, из которой были исключены ньютоновские идеализации «абсолютное пространство» и «абсолютное время». Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем. Это хорошо видно хотя бы на примере вышеуказанной идеализации «абсолютно черное тело».
27
Сама по себе идеализация, хотя и может быть плодотворной и даже подводить к научному открытию, еще недостаточна для того, чтобы сделать это открытие. Здесь определяющую роль играют теоретические установки, из которых исходит исследователь. Рассмотренная выше идеализация паровой машины, удачно осуществленная Сади Карно, подвела его к открытию механического эквивалента теплоты, которого, однако, «...он не мог открыть и увидеть лишь потому, — отмечает Ф. Энгельс, — что верил в теплород. Это является также доказательством вреда ложных теорий»5.
Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.
- Концепции современного естествознания
- I введение
- Раздел I научный метод
- 1.2. Эксперимент
- 1.3. Измерение
- 2.1.Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 3.1.Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1.1.Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2.1.Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1.1.Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.