logo
bkh_izmenennyy_1

Генетические дефекты обмена фенилаланина и тирозина.

Фенилаланин относится к незаменимым аминокислотам, поскольку ткани животных не обладают способностью синтезировать его бензольное кольцо. При любых нарушениях превращения его в тирозин развивается фенилкетонурия.

Выделяют несоклько типов: 1) Заболевание наследуется аутосомно-рецессивно и вызвано мутацией, которая вызывает снижение активности фермента фенилаланин-4-монооксигеназы, обеспечивающей превращение фенилаланина в тирозин. Фермент имеется только в печени, почках, поджелудочной железе.

В патогенезе ФКУ имеют значение многие обстоятельства, в частности:значительное накопление в тканях и жидкостях больного организма фенилаланина и его производных (фенилпировиноградная, фенилмолочная (миндальная), фенилуксусная, гиппуровая кислоты, фенилэтиламин, фенилацетилглютамин) и вызванный ими ацидоз.

Прямое токсическое действие указанных веществ на центральную нервную систему, которое заключается в торможении фенилаланином активности ряда ферментов, в том числе пируваткиназы (окисление глюкозы), тирозиназы (синтез меланина),тирозин-гидроксилазы (синтез катехоламинов) и нарушение синтеза моноаминовых нейромедиаторов – тирамина, октопамина. Нарушение синтеза серотонина, т.к. фенилаланин-4-монооксигеназа одновременно осуществляет гидроксилирование триптофана до 5-гидрокситриптофана, предшественника серотонина. Конкурентное снижение фенилаланином транспорта в клетки ароматических аминокислот – триптофана и тирозина. Нарушение синтеза простых и сложных белков в тканях, что вызывает тяжелые повреждения мозга и нарушение функции печени у большинства больных.

2) Аутосомно-рецессивный дефект дигидробиоптеринредуктазы.В результате недостаточности фермента нарушается восстановление активной формы тетрагидробиоптерина, участвующего в качестве кофактора гидроксилаз фенилаланина и триптофана. Вследствие этого нарушается превращение фенилаланина в тирозин, триптофана в 5-‑гидрокситриптофан.

Отмечается снижение уровня фолатов в сыворотке крови, эритроцитах и цереброспинальной жидкости. Это объясняется тесной взаимосвязью обмена фолатов и биоптерина, в частности участием дигидробиоптеринредуктазы в метаболизме тетрагидрофолиевой кислоты.

3) Заболевание наследуется аутосомно-рецессивно и связано с недостаточностью6‑пирувоил­тетрагидро­птеринсинтазы, участвующей в процессе синтеза тетрагидробиоптерина из дигидронеоптерин-трифосфата.

 Ключевую роль в патогенезе играет нарушение синтеза тетрагидробиоптерина. Развивающиеся при этом расстройства сходны с нарушениями, наблюдаемыми при ФКУ II.

Тирозин, помимо участия в синтезе белков, является предшественником гормонов надпочечников адреналина, норадреналина, медиатора дофамина, гормонов щитовидной железы тироксина и трийодтиронина, пигментов. Нарушения обмена тирозина многочисленны и называются тирозинемии.

Тирозинемия типа I (гепаторенальная тирозинемия) возникает при недостаточностифумарилацетоацетат-гидролазы. При этом накапливается фумарилацетоацетат и его метаболиты, поражающие печень и почки.

Альбинизм - Заболевание обусловлено полным или частичным дефектом синтеза фермента тирозиназы, необходимой для синтеза диоксифенилаланина в пигментных клетках.

Паркинсонизм - Причиной паркинсонизма (частота после 60 лет 1:200) является низкая активность тирозин-гидроксилазы или ДОФА-декарбоксилазы в нервной ткани, при этом развивается дефицит нейромедиатора дофамина и накопление тирамина.

  1. Современные представления о структурно-функциональной организации ДНК: генная (структурные элементы ДНК) и негенная (регуляторные элементы, тандемные повто­ры, псевдогены, мобильные элементы ДНК) области. Основные направления молекулярной биологии (OMICS): геномика, транскриптомика, РН-омик.

Джеймс Уотсон и Френсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДН К, пришли к выводу, что ее молекула состоит из двух полимерных цепей, образующих двойную спираль, ДНК - это полинуклеотид, сложенный из отдельных кирпичиков мононуклеотидов. В состав мононуклеотидов входят нуклеозиды, соединенные остатками фосфорной кислоты. Каждый нуклеозид представляет собой одно из четырех азотистых оснований (аденин, тимин, гуанин, или цитозин), соединенное с остатком дезоксирибозы.

В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР). Номенклатура азотистых оснований, нуклеозидов и мононуклеотидов молекулы ДНК представлена в таблице.

ДНК имеет форму спирали, в которой основания разных цепей связаны между собой водородными связями. Цепи ДНК способны разделяться с помощью специальных ферментов и служить матрицами при синтезе дочерних молекул. Важнейшее свойство ДНК — комплементарность ее цепей. Это означает, что против аденина в одной из цепей всегда стоит тимин в другой цепи, гуанин всегда соединен с цитозином. Комплементарные пары аденин и тимин соединены двумя водородными связями, а гуанин с цитозином тремя водородными связями.

Помимо водородных связей между основаниями разных цепей стабильность двойной спирали ДНК обеспечивают гликозидные связи между азотистыми основаниями и остатками дезоксирибозы, а также фосфодиэфирные связи между двумя соседними остатками дезоксирибозы.

ДНК может существовать в виде нескольких форм, различающихся числом пар оснований на виток, утлом вращения между соседними парами оснований, расстоянием между парами оснований и диаметром спирали. В условиях in vivo наиболее частой является праюсторонняя В-форма, в которой одна цепь повернута вокруг другой по часовой стрелке. Имеется также и левосторонняя Z-форма.

Комплексное изучение структуры и функции генома привело к формированию самостоятельной научной дисциплины, названной «геномикой». Предмет этой науки -строение геномов человека и других живых существ (растений, животных, микроорганизмов и др.), задача - применить полученные знания для улучшения качества жизни человека. В рамках этой новой научной дисциплины проводятся исследования по функциональной геномике, сравнительной геномике, а также по генетическому разнообразию человека.

Транскриптомика изучает структуру и динамику транскриптома - эти понятия лежат в основе формирования второго уровня  фенотипа – протеома клеток, тканей  и  т.д. Некоторые  задачи  транскриптомики  являются также и задачами функциональной  геномики -  в  той  мере,  в  какой  информация,  необходимая  для формирования структуры транскриптома, закодирована в геноме и может быть выявлена при его изучении.

  1. Генетический код и его свойства. Методы исследования ДНК (ПЦР).

Генетический (биологический) код – это способ кодирования информации о строении белков в виде нуклеотидной последовательности. Он предназначен для перевода четырехзначного языка нуклеотидов (А, Г, У, Ц) в двадцатизначный язык аминокислот. Он обладает характерными особенностями:

Триплетность – три нуклеотида формируют кодон, кодирующий аминокислоту. Всего насчитывают 61 смысловой кодон.

Специфичность (или однозначность) – каждому кодону соответствует только одна аминокислота.

Вырожденность – одной аминокислоте может соответствовать несколько кодонов.

Универсальность – биологический код одинаков для всех видов организмов на Земле (однако в митохондриях млекопитающих есть исключения).

Колинеарность – последовательность кодонов соответствует последовательности аминокислот в кодируемом белке.

Неперекрываемость – триплеты не накладываются друг на друга, располагаясь рядом.

Отсутствие знаков препинания – между триплетами нет дополнительных нуклеотидов или каких-либо иных сигналов.

Однонаправленность – при синтезе белка считывание кодонов идет последовательно, без пропусков или возвратов назад.

Однако ясно, что биологический код не может проявить себя без дополнительных молекул, которые выполняют переходную функцию или функцию адаптора.