logo
экз1

История развития компьютерной (машинной) графики

Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям – и того меньше. Андриес ван Дам считается одним из отцов компьютерной графики, а его книги – фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд, чья докторская диссертация явилась теоретической основой машинной графики.

До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.

Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость / производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие.

Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса – средства общения между человеком и машиной, – обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «What you see is what you get» – «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.

Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.

Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:

Произвольное сканирование луча. Дисплейная графика появилась, как попытка использовать электроннолучевые трубки (ЭЛТ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюмен "по–видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind–I (Ураган–I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев с произвольным сканированием луча, каллиграфических дисплеев). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей».

При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения – менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.

Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000–4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.

Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2–4). Были разработаны, но не нашли широкого применения двух–трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.

В векторных дисплеях легко стереть любой элемент изображения – достаточно при очередном цикле построения удалить стираемый элемент из дисплейного файла.

Текстовый диалог поддерживается с помощью алфавитно–цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием – координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора) любой части требуемого элемента.

Первые серийные векторные дисплеи за рубежом появились в конце 60–х годов.

Растровое сканирование луча. Прогресс в технологии микроэлектроники привел к тому, с середины 70–х годов подавляющее распространение получили дисплеи с растровым сканированием луча.

Запоминающие трубки. В конце 60–х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше – до 4096 точек.

Текстовый диалог поддерживается с помощью алфавитно–цифровой клавиатуры, косвенный графический диалог осуществляется перемещением перекрестия по экрану обычно с помощью координатных колес.

Появление таких дисплеев с одной стороны способствовало широкому распространению компьютерной графики, с другой стороны представляло собой определенный регресс, так как распространялась сравнительно низкокачественная и низкоскоростная, не слишком интерактивная графика.

Плазменная панель. В 1966г. была изобретена плазменная панель, которую упрощенно можно представить как матрицу из маленьких разноцветных неоновых лампочек, каждая из которых включается независимо и может светиться с регулируемой яркостью. Ясно, что системы отклонения не нужно, не обязательна также и память регенерации, так как по напряжению на лампочке можно всегда определить горит она ли нет, т.е. есть или нет изображение в данной точке. В определенном смысле эти дисплеи объединяют в себе многие полезные свойства векторных и растровых устройств. К недостаткам следует отнести большую стоимость, недостаточно высокое разрешение и большое напряжение питания. В целом эти дисплеи не нашли широкого распространения.

Жидкокристаллические индикаторы. Дисплеи на жидкокристаллических индикаторах работают аналогично индикаторам в электронных часах, но, конечно, изображение состоит не из нескольких сегментов, а из большого числа отдельно управляемых точек. Эти дисплеи имеют наименьшие габариты и энергопотребление, поэтому широко используются в портативных компьютерах несмотря на меньшее разрешение, меньшую контрастность и заметно большую цену, чем для растровых дисплеев на ЭЛТ.

Электролюминисцентные индикаторы. Наиболее высокие яркость, контрастность, рабочий температурный диапазон и прочность имеют дисплеи на электролюминисцентных индикаторах. Благодаря достижениям в технологии они стали доступны для применения не только в дорогих высококлассных системах, но и в общепромышленных системах. Работа таких дисплеев основана на свечении люминофора под воздействием относительно высокого переменного напряжения, прикладываемого к взаимноперпендикулярным наборам электродов, между которыми находится люминофор.

Дисплеи с эмиссией полем. Дисплеи на электронно–лучевых трубках, несмотря на их относительную дешевизну и широкое распространение, механически непрочны, требуют высокого напряжения питания, потребляют большую мощность, имеют большие габариты и ограниченный срок службы, связанный с потерей эмиссии катодами. Одним из методов устранения указанных недостатков, является создание плоских дисплеев с эмиссией полем с холодных катодов в виде сильно заостренных микроигл.

Таким образом, стартовав в 1950г., компьютерная графика к настоящему времени прошла путь от экзотических экспериментов до одного из важнейших, всепроникающих инструментов современной цивилизации, начиная от научных исследований, автоматизации проектирования и изготовления, бизнеса, медицины, экологии, средств массовой информации, досуга и кончая бытовым оборудованием.

5.

 Программные средства работы с компьютерной графикой называют графическими редакторами(graphics editor). Существуют два типа графических редакторов:

1) редакторы для создания новых изображений;

2) редакторы для улучшения уже готовых изображений, полученных с помощью сканера, видеокамеры, цифрового фотоаппарата и других средств.

   Рассмотрим сначала графические редакторы для работы с растровой графикой. Существует несколько десятков форматов, в которых сохраняются растровые изображения. Универсальным при работе с ОС Windows считается формат без сжатия информации Windows Bitmap, имеющий расширение .bmp. Для Web-документов в сети Internet более удобны форматы, обеспечивающие сжатие информации с целью сокращения объема файлов. Одним из таких форматов является формат JPEG (расширение .jpg), сохраняющий данные с огромной степенью сжатия, но за счет потери некоторой, относительно небольшой части информации. Также используемый в Internet формат GIF (расширение .gif) обеспечивает наивысшее уплотнение без потери информации. В полиграфии распространенным является специальный формат TIFF (расширение .tif), дающий неплохую степень сжатия и открывающий некоторые дополнительные возможности при печати изображений.

   Из графических редакторов первого типа для растровых изображений очень популярен и относительно прост однооконный (на экране монитора открывается единственное окно) редактор Paint, входящий в программное обеспечение Windows 95. Редактор Paint представляет собой OLE-сервер, и созданные в нем изображения можно вставлять в документы таких универсальных приложений Windows, как MS Word, MS Excel, MS PowerPoint и даже в базы данных MS Access. Для создания и редактирования изображений Paint представляет богатый набор инструментов (палитры цветов, кисть, распылитель, ластики для стирания, «карандаши», ножницы для вырезания фрагментов) и средств работы с этими инструментами. Paint позволяет создавать довольно сложные черно-белые или цветные рисунки, схемы, чертежи, хотя и не обладающие высокими художественными или инженерно-техническими качествами. В силу своей простоты и доступности Paint часто используется в качестве первой ступени при обучении и при овладении более сложными средствами компьютерной графики.

   К редакторам первого типа относятся также Painter компании Fractal Design, Free Hand компании Macromedia и Fauve Matisse. Редактор Painter обладает широкими воз­можностями средств рисования и работы с цветом, позволяя, в частности, имитировать различные инструменты (кисти, карандаши, перо, уголь) и материалы (акварель, масло, тушь). Последние версии редактора Free Hand также содержат разнообразные средства редактирования изображений и текста, включая многоцветную градиентную заливку, библиотеку спецэффектов и др.

   К графическим редакторам второго типа относятся, например, редакторы Adobe Photoshop, Photostyler, Picture Publisher, из них наиболее популярны редакторы Adobe Photoshop фирмы Adobe, фактически считающиеся стандартом в этой области. Из множества средств обработки готовых изображений отметим такие средства, как улучшение яркости и контраста, повышение четкости, цветовая коррекция (изменение яркости и контрастности в различных цветовых каналах), отмывка (изменение яркости фрагментов), обтравка (вырезание отдельных фрагментов и их последующее улучшение с возвратом, «вклеиванием», на прежнее место), набивка (восстановление утраченных элементов изображения путем копирования сохранившихся фрагментов), растушевка (сглаживание границ), монтаж (компоновка изображения из фрагментов одного или нескольких изображений). Интересным средством обработки изображений являются фильтры — программные средства преобразования изображений с целью улучшения их качества или художественной выразительности. С помощью фильтров можно повысить четкость изображения, придать фотографии вид карандашного или угольного рисунка, барельефа, гравюры, мозаики; выполнить стилизацию изображения, например имитировать изображение на ткани, бумаге, металле и других основах.

   При выполнении этих преобразований графические редакторы предоставляют пользователю специальные инструментальные палитры в виде диалоговых окон с различными панелями (наборами) инструментов, указанных пиктограммами. Так в редакторе Adobe Photoshop 4.0 имеется 10 таких палитр. Основное отличие палитр от обычных диалоговых окон ОС Windows — возможность перекомпоновки рабочей среды пользователем путем перемещения палитр на экране и монтирования новых палитр.

Рассмотрим теперь графические редакторы, применяемые для работы с векторной графикой, когда изображение — чертеж, схема, диаграмма, но не рисунок. Наиболее известными из таких редакторов являются Adobe Illustrator 7.0 (по-видимому, самый лучший); Macromedia Freehand 8.0, имеющий дружественный интерфейс и рекомендуемый для начинающих пользователей, и Corel Draw (версии от 5.0 до 8.0), исторически применяемый в компьютерах IBM PC, — очень богатый по своим возможностям и позволяющий создавать изображения, подобные художественным, однако более сложный в изучении и использовании и с менее удобным пользовательским интерфейсом, чем первые два редактора. В последнее время Corel Draw применяется меньше, поскольку редакторы Adobe Illustrator и Macromedia Freehand стали шире использоваться и в компьютерах IBM PC.

   Элементами векторной графики в графических редакторах служат линии, контуры, объекты. Эти элементы можно группировать, комбинировать, объединять, заливать различными способами, используя многочисленные меню и инструменты, обычно кодируемые пиктограммами. Вместе с рисунками можно создавать и тексты, причем не только строчные, но и фигурные, расположенные вдоль заданных кривых или в заданных контурах. Можно также видоизменять символы и шрифты, создавая необычные надписи, обладающие художественной выразительностью, например логотипы (краткие наименования) предприятий и фирменные стили для использования в объявлениях, рекламах, проспектах, а также для создания оригинальных электронных документов и Web-страниц в сети Internet. Отметим еще, что растровые изображения можно преобразовывать в векторные, а затем дорабатывать, улучшать с помощью редакторов векторной графики и, наоборот, векторные изображения преобразовывать в растровые с целью последующего редактирования, улучшения с помощью, например, такого мощного средства, как фильтры редактора Photoshop.

   Одним из перспективных приложений средств компьютерной графики становятся в последнее время настольные типографии (desktop publisher) для печати малотиражных изданий, реклам, извещений, объявлений, листовок, а также настольные издательские системы, применяемые для оформления (верстки) документов, предназначенных для полиграфических изданий. Наиболее известными из настольных издательских систем являются QuarkXPress и PageMaker. Процесс верстки документа состоит в оформ­лении текста и взаимного расположения текста и иллюстраций на основе оконной технологии. Цель верстки — создание оригинал-макета, пригодного для последующего размножения документа полиграфическими средствами. Работа с настольными издательскими системами является объектно-ориентированной, объектами работы служат блоки текста, рисунки и стандартные элементы оформления (линии, рамки и т.п.), причем блоки текста и рисунки могут быть подготовлены заранее с помощью текстовых и графических редакторов. Пользователю настольной издательской системы предоставляется набор действий, оформленных как меню, панель инструментов, панель размеров и панель макета документа. Для хранения наборов объектов, созданных пользователями, имеются библиотеки, которые можно пополнять в ходе работы. Из библиотек можно извлекать копии текстовых и графических объектов, используемых в верстке. Имеется также широкий набор средств для работы с цветом.

6.