Гипотеза мира РНК

курсовая работа

I.1.1 Репликация теломерных участков эукариотических хромосом

На концах хромосом эукариот находятся специализированные повторяющиеся последовательности ДНК, получившие название теломерной ДНК, а содержащие ее концы хромосом -- теломероми. В клетках животных количество хромосом, а следовательно, и теломерных участков невелико -- они составляют лишь небольшую часть от всех остальных последовательностей.

Использование в качестве объекта исследования теломерной ДНК ресничной инфузории Tetrahymena thermophila, в клетках которой находятся десятки тысяч мелких хромосом, а следовательно, и множество теломер, показало, что теломеры построены из коротких (содержат по 6 -- 8 нуклеотидных остатков) многократно повторяющихся последовательностей (блоков). При этом одна цепь ДНК обогащена остатками гуаниловой кислоты (G-богатая цепь, у тетрахимены -- это блок ТТGGGG), а комплементарная ее цепь обогащена остатками цитидиловой кислоты (С-богатая цепь). Теломерная ДНК человека построена из ТТАGGG-блоков, т.е. отличается от простейших всего лишь одним нуклеотидом в повторе. Из ТТАGGG-блоков построены теломерные ДНК (их богатые С-цепи) всех млекопитающих, рептилий, амфибий, птиц и рыб. Универсален и теломерный повтор (ТТТАGGG) у всех растений.

Теломеры играют важную роль в создании специфической архитектуры и внутренней упорядоченности клеточного ядра. Они предотвращают деградацию и слияние хромосом, а также ответственны за их прикрепление к специальной внутриклеточной структуре (своеобразному скелету клеточного ядра).

Механизмы репликации теломерных участков эукариотических хромосом и центральных областей ДНК принципиально различаются. Все известные ДНК-полимеразы, являющиеся ферментами сложного репликативного комплекса эукариот, неспособны полностью реплицировать концы линейных молекул ДНК. Известно, что ДНК-полимеразы, синтезируя дочернюю нить ДНК, прочитывают родительскую нить в направлении от ее З-конца к 5-концу. Соответственно дочерняя цепь синтезируется в направлении 5>3. Кроме того, ДНК-полимераза начинает синтез только со специального РНК-праймера, комплементарного ДНК. После окончания синтеза ДНК РНК-праймеры удаляются, а пропуски в одной из дочерних цепей ДНК (отстающей) заполняются ДНК-полимеразой в. Однако на З-концевых участках ДНК такой пропуск заполнен быть не может, и поэтому они остаются однотяжевыми, а их 5-концевые участки -- недореплицированными. Следовательно, при каждом раунде репликации хромосомы будут укорачиваться на 10 -- 20 нуклеотидов (у разных видов размер РНК-затравок различен), и в первую очередь сокращать длину теломерной ДНК. Возникла проблема «концевой недорепликации ДНК». В случае репликации кольцевых бактериальных ДНК этой проблемы не существует, так как первые по времени образования РНК-праймеры удаляются ферментом, который одновременно заполняет образующуюся брешь путем наращивания З-ОН-конца растущей цепи ДНК, направленной в «хвост» удаляемому праймеру. Проблема недорепликации З-концов линейных молекул решается эукариотическими клетками с помощью специального фермента -- теломеразы. Этот фермент был обнаружен впервые в 1985 г. у инфузории Tetrahymena thermophila, а впоследствии -- в дрожжах, растениях и у животных, в том числе в яичниках человека и бессмертных линиях раковых клеток НеLа.

Теломераза является ДНК-полимеразой, достраивающей 3-концы линейных молекул ДНК хромосом короткими (6 -- 8 нуклеотидов) повторяющимися последовательностями (у позвоночных ТТАGGG). Согласно номенклатуре, этот фермент называют ДНК-нуклеотидилэкзотрансферазой, или теломерной терминальной трансферазой (мол. масса 103--133 кДа). Помимо белковой части теломераза содержит РНК, выполняющую роль матрицы для наращивания ДНК повторами.

Длина теломерной РНК колеблется от 150 нуклеотидов -- у простейших до 1400 нуклеотидов -- у дрожжей, у человека -- 450 нуклеотидов. Наличие в молекуле теломеразы РНК-последовательности, по которой идет матричный синтез фрагмента ДНК, позволяет отнести теломеразу к своеобразной обратной транскриптазе, т.е. ферменту, способному вести синтез ДНК по матрице РНК. Основное назначение теломеразы -- синтезировать тандемно повторяющиеся блоки ДНК, из которых состоит G-цепь теломерной ДНК. Матричный участок представлен в теломеразной РНК только один раз. Его длина не превышает длину двух повторов в теломерной ДНК.

Механизм синтеза теломерных повторов, катализируемый теломеразой:

На первой стадии (связывание теломеры) происходит комплементарное взаимодействие части матричного участка теломеразной РНК с 3-концевым выступающим одноцепочечным сегментом ДНК хромосом. При этом З-концевой фрагмент ДНК служит затравкой для удлинения этой ДНК на РНК-матрице. На стадии элонгации выступающая цепь ДНК удлиняется до конца матрицы. Эта реакция осуществляется РНК-зависимой ДНК-полимеразной активностью теломеразы.

После удлинения выступающей цепи ДНК до конца матрицы происходит транслокация, т.е. перемещение матрицы и белковых субъединиц фермента на заново синтезированный конец теломеразной ДНК, и весь цикл повторяется вновь. После завершения удлинения одноцепочечной З-концевой теломерной последовательности вторая цепь ДНК (С-цепь) достраивается с помощью обычной ДНК-полимеразы. Таким образом происходит решение проблемы концевой репликации ДНК у эукариот.

Рис. 1. Репликация теломерных участков эукариотических хромосом (Цитировано по [1]):

А -- возникновение недореплицирования 5-конца линейной хромосомы и синтез на этом концевом участке теломерной ДНК с помощью теломеразы;

Б -- основные этапы синтеза теломерного повтора теломеразой

Делись добром ;)