logo
Генотоксические эффекты у детей - подростков из Чебулинского района Кемеровской области

1.1.3. Механизмы возникновения хромосомных перестроек

Хромосомные перестройки - это обширный и гетерогенный класс наследственных изменений, включающий выпадение (потери). Добавления (удвоение, умножение) участков хромосом, а также их перемещения в пределах одной хромосомы или между хромосомами.

Исторически эксперименты и теоретически построения по индуцированному мутагенезу значительно опередили работы по выяснению природы генетического материала хромосом. Однако после 1953, когда в работе Д. Уотсона и Ф. Крика (D. Watson, F. Crick,1953) было сделано предположение о структуре молекулы ДНК, о полуконсервативном характере об репликации и о возможной молекулярной природе мутаций, открылась возможность для конкретных исследований как характера повреждений в ДНК, индуцируемых различными мутагенами, так и реальных механизмов репарации этих повреждений. В монографии Н.П. Дубинина (1978) приведены сведения о повреждениях ДНК различными мутагенами.

Обширный класс алкилирующих соединений может производить алкилирование (присоединение метильной или этильной группы) в некоторых позициях к азотистым основаниям (чаще всего к гуанину) или к фосфатным группам полинуклиотидной нити. Алкилированные азотистые основания за счет гидролиза выщепляются из цепочки ДНК, в следствии чего появляются апуриновые или апиримидиновые сайты. В таких сайтах далее может идти гидролиз нестабильных дезоксирибозидных остатков, и в результате возникают однонитевые разрывы в ДНК. Разрывы могут быть и следствием гидролиза после алкилирования фосфатных групп.

Бифункциональные алкилирующие соединения (серный и азотный иприт,митомицин C) своими двумя алкильными группами могут алкилировать сразу два гуанина из двух комплементарных нитей ДНК, образуя при этом внутримолекулярную сшивку.

Такие сшивки - типичный результат воздействия на ДНК также азотистой кислоты и ее солей.

Как видно, большинство первичных изменений в ДНК, вызываемых мутагенами, сами по себе еще не мутации, т.е. не являются изменениями в последовательности нуклеотидов. Эта последовательность может быть изменена только после прохождения поврежденной молекулы через этап репликации. Так, при репликации молекулы, в одну из нитей которой встроена молекула акридинового красителя, против этой поврежденной нити строиться комплементарная ей цепочка, содержащая лишний нуклеотид, вставленный против места, где в поврежденной цепи интеркалирована молекула акридина. Такая вставка нуклеотида, закрепляющаяся в обеих нитях молекулы после еще одной репликации - это уже мутация, обозначаемая как “сдвиг рамки считывания” (frame shift). Сшивки в молекуле ДНК обычно летальны, т.к. не позволяют осуществлять нормальную репликацию из-за невозможности расплетения нитей в месте сшивки. (Смирнов В.Г. 1991).

Однако в работах Р. Кимбола (R. Kimball, 1966) указывалось, что клетка способна к репарации повреждений в ДНК, вызванных действием мутагенов.

В большинстве случаев первичных повреждений после первой же репликации (если они не были репарированны до репликации) напротив них во вновь синтезированной нити ДНК появляется брешь. Ю.А. Митрофанов и Г.С. Олимпиенко (1980) именно состояние такого разрыва в одной из комплементарных нитей ДНК и считают потенциальным повреждением, которое при одних условиях может быть репарировано, а при других - превращается в двунитевый разрыв в молекуле ДНК (хроматидный разрыв).

A. Bender с соавторами ( Bender et al., 1973) считают, что при разрыве в одной из нитей двунитевой молекулы ДНК неповрежденная нить может разрезаться напротив разрыва ДНК-азой, специфичной для однонитевой ДНК.

Полагается, что такой механизм материализует идею резонансного мутагенеза - перенося повреждения с поврежденной нити на неповрежденную.

По мнению Смирнова В.Г. (1991) обменные перестройки при воздействии самыми разными мутагенами возникают благодаря одному и тому же механизму, характеризующемуся воссоединением концов появляющихся разрывов. Условием этого является тесная пространственная ассоциация между участками хроматид одной хромосомы или разных хромосом. При наличии такой ассоциации возникающие в хроматидах разрывы воссоединяются подобно тому, как это происходит при кроссинговере (Беляев И.Я., Акифьев А.П., 1988).

Разные исследователи неоднократно обращали внимание на сходство между процессом кроссинговера и образованием обменных перестроек при контакте хроматид. Впервые такую мысль высказали А.С. Серебровский и Н.П. Дубинин (1929), а затем “Обменную гипотезу” о механизме возникновения перестроек предложил С. Ривелл (S. Revell, 1955, 1974). Результаты, полученные И.Я. Беляевым и А.П. Акифьевым (1988), свидетельствуют о плодотворности сопоставления этих двух процессов.

Ассоциации, между участками хроматид одной хромосомы или разных хромосом, могут устанавливаться между районами хромосом, содержащими высокоповторяющиеся последовательности ДНК. Такие последовательности сосредоточены в гетерохроматиновых районах хромосом - в прицентромерном и интерколярном структурном гетерохроматине. Именно для гетерохромотиновых районов неоднократно описаны цитологически наблюдаемые ассоциации не гомологичных хромосом.

Образование хромосомных аберраций возможно не только на основе рекомбинации в районах локализации высокоповторяющихся не кодирующих последовательностей ДНК, но и на основе рекомбинации между повторяющимися генами, при наличии дубликаций в геноме.

Так же основой для возникновения хромосомных перестроек по рекомбинационному механизму может быть присутствие в геноме значительного числа копий различных мобильных элементов (Смирнов В.Г. 1991).

Вопрос о механизме возникновения хромосомных перестроек стал активно обсуждаться сразу же после установления возможности индуцировать, усилить мутационный процесс при воздействии такого возможного фактора, как различные виды ионизирующих излучений (Г.А. Карсон, Г.С. Филиппов, 1925; Н. Миллер, 1927; L. Stadler, 1928).

А. Стадлер (L. Stadler, 1928) и М.С. Навашин (1931) считали, что первичный эффект в действии Х-лучей на хромосомы - возникновение разрывов. Это положение легко в основу широко известной гипотезы о механизме возникновения индуцированных хромосомных перестроек, созданной в работе К. Сакса (K. Sax, 1938-1942) и Д. Ли (D. Lea 1963, D. Catcheside 1942). В зависимости от стадии клеточного цикла возникают либо хромосомные (при облучении в период G1 до фазы S), либо хроматидные (при облучении в фазах S и в начале G2) разрывы. Большая их часть затем вновь воссоединяется с восстановлением исходной структуры (реституция). Однако если разрывы в разных местах одной хромосомы (или хроматиды) или в разных хромосомах (или хроматидах) в один и тот же момент локализируется близко друг к другу, они могут воссоединится таким образом, что возникают хромосомные или хроматидные делеции (нехватки), транслокации, инверсии, вставки, образуются центромерные или бесцентромерные кольцевые хромосомы, бесцентромерные фрагменты. Отдельные фрагменты, появившиеся сразу в результате возникновения разрывов, могут сохраняться как таковые и без воссоединения с какими-либо другими.

Довольно скоро были получены убедительные данные о возможной модификации мутагенного эффекта излучений благодаря действию дополнительных факторов (температура, инфракрасный свет, понижение концентрации кислорода), из которых каждый сам по себе не оказывал влияние на спонтанный уровень мутационного процесса. Так в опытах К. Свенсона и А. Холлендера (C. Swenson, A. Hollaender, 1946) было показано, что обработка микроспор традесканции инфракрасным светом до или после облучения Х-лучами приводит к значительному увеличению частоты как хроматидных делеций, так и межхромосомных перестроек, причем в максимальной степени этот эффект инфрактасных лучей был выражен при температуре 12 градусов С и уменьшался при более низкой температуре.

Опыты такого рода заставили предположить, что ионизирующее излучение вызывает не только разрывы хромосом, но и некоторые предмутационные, потенциальные изменения в них, которые при дополнительном воздействии слабее действующих факторов могут реализоваться в дополнительные разрывы и перестройки (Смирнов А.Г. 1991).

1.1.4. Принципы учета хромосомных аберраций на стадии метафазы и общие рекомендации к нему.

Окрашенные препараты начинают анализировать под небольшим увеличением микроскопа, чем достигается общая оценка препарата, а именно митотическая активность и наличие метафазных пластинок. Для анализа хромосом требуется иммерсионный объектив.

При проведении метафазного анализа возможны два подхода к учету хромосомных аберраций: с кариотипированием метафазной пластинки и без кариотипирования. Первый подход наиболее точен, но он трудоемок и может быть применен в специальных исследованиях (например, при изучении распределения повреждений по группам хромосом, по длине отдельных хромосом). Второй подход наиболее употребителен и дешев при быстром решении вопроса (Priest, 1969). Так, например, при оценке мутагенности факторов внешней среды достаточно учитывать хромосомные аберрации без кариотипирования.

При анализе обмена наиболее полная информация включает ответы на следующие вопросы:

1) число вовлеченных в обмен хромосом и хроматид;

2) симметричность транслокаций (эу - или анэуцентричность);

3) реципроктность (полнота);

4) гомологичность вовлеченных в обмен хромосом и их идентификация;

5) сравнительная величина участников при транслокации между гомологичными хромосомами.

При анализе каждой аберрации необходимо помнить об одном факте: гомологичные участки сестринских хроматид взаимно притягиваются независимо от их перемещения.

Распознавание парных ацентрических фрагментов обычно не вызывает затруднений. Они могут быть очень маленькими, еле заметными и очень длинными палочнообразными структурами, лежащими, как правило, параллельно друг другу за счет притяжения сестринских хроматид. Полагают, что они представляют собой концевые делеции. Иногда можно наблюдать очень длинные фрагменты, образовавшиеся за счет слияния ацентрических участков двух хромосом. Эти случаи должны отмечаться особо, если в клетках не было дицентриков, поскольку речь идет о повреждении двух хромосом с неполным обменом. Ацентрические фрагменты практически никогда не лежат рядом и на той же оси с фрагментированной хромосомой. Благодаря этому их легко отличить от изохроматидных обменов.

“Точковые” фрагменты - парные округлые образования, без просвета в середине, интенсивно окрашенные, диаметр не менее, чем поперечник хроматиды.

Обе “точки” лежат рядом за счет притяжения сестринских хроматид. Если фрагменты имеют длину или диаметр больше, чем поперечник хроматиды, то считают, что это интерстициальный небольшой участок хромосомы, замкнувшийся в маленькое ацентрические кольцо. Если фрагменты имеют длину или диаметр меньше поперечника хроматиды, то такие фигуры относят к парным фрагментам. Следует, однако, отметить, что строгих доказательств такого деления нет.

Ацентрические кольца могут быть легко распознаны при их хорошем распластывании на стекле. Иногда они располагаются боком. В этих случаях для них характерны овальная форма и отсутствие просвета. Оба сестринских кольца лежат рядом часто с наложением одного на другое в силу притяжения идентичных участков сестринских хроматид.

Кольцевые хромосомы являются замкнутыми структурами, включающими участки большей или меньшей величины обеих плеч. Они относятся к группе внутрихромосомных обменов между двумя плечами. При большом количестве повреждений могут образовываться и дицентрические кольцевые хромосомы.

Точный анализ хромосомных аберраций требует правильно отбирать клетки для исследования и они должны отвечать следующим требованиям:

1) Все хромосомы должны быть хорошо прокрашены и равномерно разбросаны.

2) Не допускается наличие нескольких случайных хромосом в поле зрения.

3) Уровень конденсации хромосом должен находится в следующих пределах:

max - малые акроцентрические хромосомы видны в виде четко выраженных структур, а не в виде точек, т.к. в таком случае их легко можно принять за точечные фрагменты;

min - хромосомы разделены на две хроматиды и лежат отдельно друг от друга.

4) Не допускается наличие в метафазных пластинках хромосом, вошедших а анафазу, потому что их трудно отдиффиренцировать от парных фрагментов.

5) Не допускается анализ метафазных пластинок с большим количеством наложений хромосом, особенно продольных, т.к. в таких случаях можно определить большее количество обменных аберраций, чем имеется в действительности.

6) Из-за технических манипуляций возможны потери хромосом в пластинке. Обычно при учете хромосомных аберраций допускается анализ клеток с числом хромосом от 44 до 47 (Бочков, 1971).

Данные цитогенетических исследований заносят в специальные бланки-протоколы, где отличают число хромосом, общее

число проанализированных клеток, число клеток с аберрациями, общее число аберраций, типы аберраций, а также зарисовки аберраций и их координаты.

1.2. Спонтанный хромосомный мутагенез.

Подразделение хромосомных аберраций на спонтанные и индуцированные являются чисто условными. Так как возникновение любой аберрации обусловлено определенными мутагенными факторами. О спонтанных хромосомных аберрациях говорят в тех случаях когда точная причина их возникновения неизвестна.

Закономерности спонтанных хромосомных аберраций достаточно полно изучены в лаборатории мутагенеза Института медицинской генетики АМН на основе исследований 531 культуры лимфацитов переферической крови 437 здоровых лиц разного возраста и пола (Бочков и др., 1972).

Ниже приведены основные параметры спонтанных хромосомных аберраций в лимфацитах крови человека. При исследовании более 60 тыс. клеток обнаружено, что средняя частота клеток с хромосомными аберрациями составляет 1,2%, а число аберраций на клетку не превышает 0,0124. Сравнение этих показателей у лиц разного возраста и пола не выявило существенных колебаний, т.е. частота спонтанных хромосомных аберраций находится в одних и тех же пределах у индивидов мужского и женского пола в возрасте от 0 до 70 лет. Среди обнаруженных аберраций более 90% составили ацентрические фрагменты (одиночные и парные). Обменные аберрации составили около 6-8%. Распределение исследованных культур по частоте клеток с хромосомными аберрациями оказалось следующим: из 527 изученных культур 30,4% были без аберраций, 38,1% имели по одной аберрантной метафазе и одной хромосомной аберрации, 19,9% - по две, 8,3% - по три, 2,1% - по четыре, 0,4% - по пять, 0,6% - по шесть, 0,2% - по семь. Таким образом, 96,7% исследуемых культур лимфоцитов от здоровых лиц имели частоту аберрантных клеток и хромосомных аберраций в пределах от 0 до 3. Это распределение культур соответствует теоретическому распределению Пуассона, на основании чего можно сделать заключение о том, что максимальный уровень клеток с хромосомными аберрациями в культуре лимфоцитов человека в норме не превышает 3% (Захаров А.Ф., 1992).

Некоторые авторы наблюдали у отдельных индивидов из контрольных выборок клетки с необычно большим числом хромосомных аберраций. Интерпретация таких находок не может быть однозначной, поскольку действие мутагенных факторов трудно оценивать ретроспективно. Это могло быть действие вируса, химического вещества, облучения или это могло быть результат спонтанного мутагенного процесса (Бочков, 1989).