Учение В.И. Вернадского. Принцип построения дерева ошибок персонала

контрольная работа

2. Принцип построения дерева ошибок персонала.

Нетрадиционным инструментом оценки выгод является метод анализа дерева ошибок (Fault Tree Analysis). Цель применения данного метода - показать, в чем заключаются причины нарушений политики безопасности и какие сглаживающие контрмеры могут быть применены. Дерево ошибок - это графическое средство, которое позволяет свести всю систему возможных нарушений к логическим отношениям «и»/«или» компонентов этой системы. Если доступны данные по нормам отказа критических компонентов системы, то дерево ошибок позволяет определить ожидаемую вероятность отказа всей системы.

Применяя этот метод к системам информационной безопасности, мы можем произвести дерево с причинно-следственными отношениями между атаками на систему и нарушениями системы. Использование контрмер по предотвращению нарушений позволяет уменьшить ответвления дерева и, таким образом, определить эффект от внедрения системы ИБ на сравнении «двух деревьев» с использованием контрмер и без.

Важно заметить, что этот метод базируется на двух связанных предположениях: во-первых, что компоненты системы разрушаются случайным образом согласно хорошо известной статистике, во-вторых, на самом низком уровне дерева составляющие отказа независимы друг от друга. Все-таки отказы программного обеспечения системы ИБ неслучайны и, скорее всего, возникают из-за системных ошибок, и это в большинстве своем влияет на работу других частей системы. Об этом не следует забывать при применении данного метода к системе информационной безопасности.

В настоящее время этот метод еще недостаточно адаптирован к области информационной безопасности и требует дальнейшего изучения.

Развитие научно-технического прогресса, увеличение количества технологического оборудования, использование химически и взрывоопасных веществ, усложнение технологий и режимов управления технологическими процессами требуют разработки механизма получения качественных и количественных оценок техногенного риска.

В настоящее время не существует общепринятого устоявшегося метода для оценки техногенного риска опасных производственных объектов. Наиболее существенный недостаток большинства известных ныне подходов оценки техногенного риска - явный, хотя и немаловажный, акцент на распространение вредных выбросов в биосфере и, соответственно, на меры защиты от них. При этом недостаточное внимание уделяется мероприятиям по предотвращению аварий, что связано, главным образом, с трудностями оценки вероятности возникновения соответствующих происшествий.

Существующие методы оценки вероятности возникновения самой аварии в виде диаграмм причинно-следственных связей типа «дерево» («дерево отказа», «дерево событий»), «граф» (потоковый либо состояний и переходов), «сеть» (стохастической структуры - К. Петри или GERT) сложны, громоздки и трудоемки в основном из-за отсутствия, неточности, неопределенности исходных данных и обладают высокой степенью субъективности. К тому же из рассмотрения зачастую выпадают некоторые причины возникновения аварий и, соответственно, становится затруднительным рекомендовать индивидуальные меры безопасности, направленные на предупреждение аварии на конкретном производственном объекте.

Использование традиционных математических методов позволяет эффективно принимать решения только в тех условиях, когда параметры системы известны или их можно представить в виде фиксированных значений. Использование только детерминированных методов и моделей заставляет вносить определенность в те ситуации, в которых ее в действительности не существует.

Методики, построенные на положениях искусственного интеллекта, дают возможность использовать приближенные, но в то же время обладающие достаточной степенью эффективности, способы описания слабоформализуемых систем, для анализа которых невозможно применение традиционных математических методов.

Сложившуюся проблемную ситуацию может разрешить рассматриваемая ниже модель анализа риска аварийных ситуаций с использованием экспертных систем.

Для проведения анализа риска используется графическая модель (рис.1) -- древовидная структура, аналогичная дереву отказов [2]. Отличие заключается в том, что элементами модели могут быть не только события, переводящие систему из одного состояния в другое, но и процессы и явления различной природы.

Каждый элемент схемы считается лингвистической переменной. При этом формулировки событий, явлений, процессов меняются таким образом, чтобы была возможность их количественного описания. В основном применяются реальные физические или технические параметры. Если это не удается, вводятся относительные показатели, коэффициенты, баллы и т.п. Функции принадлежности всех используемых в модели лингвистических переменных формулируются с привлечением экспертных знаний, и разрабатывается система логических правил формирования аварийной ситуации таким образом, чтобы при количественном анализе была возможность оценивать вероятность наступления аварийной ситуации.

Выстраиванию причинной цепи предпосылок аварии способствуют факторы опасности, обусловленные ошибками персонала, отказами оборудования и нерасчетными внешними воздействиями со стороны рабочей и внешней среды. На обрыв причинной цепи предпосылок влияет устранение ошибок оператором, своевременное срабатывание приборов и устройств безопасности и разделение во времени или пространстве источника опасности и потенциальной жертвы возможной аварии.

Рис. 1. Модель анализа риска аварийной ситуации.

вернадский биосфера ошибка авария

Следовательно, при построении модели анализа риска необходимо учитывать психофизиологические свойства персонала, показатели надёжности оборудования, свойства и особенности рабочей и внешней среды, уровень используемой технологии.

Очевидно, что перечисленные свойства имеют различную природу, и по-разному влияют на процесс возникновения аварии.

Для построения модели анализа риска будем опираться на типичное распределение причин аварийности и травматизма на объектах хлорирования воды, являющиеся опасными производственными объектами химической промышленности, на которых производится хранение опасных и вредных веществ и сливо-наливные операции.

Определяются факторы, влияющие на безопасную эксплуатацию оборудования. Факторы условно подразделяются на технические, структурные, человеческие и информационные (таб. 1). По каждому из факторов выявляются опасные внешние воздействия, действующие на технологический процесс хлорирования: коррозия, усталостные явления в материалах и сварных соединениях, механические повреждения, отклонение параметров от рабочих значений, ошибки персонала и т.д.

Оценки факторов опасности (F) являются балльно - лингвистическими переменными модели анализа возникновения происшествия.

Все факторы опасности условно можно разбить на два класса:

- Стабилизирующие - факторы опасности, увеличение балльной оценки которых приводит к снижению вероятности аварии (например, "Комфортность рабочей среды").

- Деструктивные - факторы опасности, увеличение балльной оценки которых приводит к повышению вероятности аварии (например, "Длительность действия опасных и вредных воздействий").

Кроме того, факторы опасности можно разделить на критические и общезначимые:

- Критические - негативное состояние которых может непосредственно привести к возникновению аварии (например, «Безотказность приборов и устройств безопасности»);

- Общезначимые - негативное состояние которых не является достаточным условием возникновения аварии (например, «Удобство технического обслуживания и ремонта»).

Таблица 1. Факторы опасности

Наименование фактора опасности

Технические

Оснащенность источниками опасных и вредных факторов

Надежность вспомогательных узлов и элементов

Безотказность основных узлов и элементов

Длительность действия опасных и вредных воздействий

Уровень потенциала опасных и вредных воздействий

Безотказность приборов и устройств безопасности

Структурные

Комфортность рабочей среды по физико-химическим параметрам

Удобство подготовки и выполнения работ

Удобство технического обслуживания и ремонта

Сложность алгоритмов оператора

Возможность появления человека в опасной зоне

Возможность появления других незащищенных элементов в опасной зоне

Надежность технологических средств обеспечения безопасности

Человеческие

Пригодность по физиологическим показателям

Технологическая дисциплинированность

Навыки выполнения работ

Качество мотивационной установки

Знание технологии работ

Знание физической сущности процессов в системе

Способность правильно оценивать информацию

Качество принятия решения

Самообладание в экстремальных ситуациях

Обученность действиям в нештатных ситуациях

Точность корректирующих действий

Информационные

Качество информации о технологическом процессе

Качество приема и декодирования информации оператором

Делись добром ;)