6.4. Взаимодействия. Классификация элементарных частиц
В настоящее время в физике определено существование четырех типов физических взаимодействий — гравитационного, сильного, электромагнитного и слабого. Оказывается, что все они имеют калибровочную природу и описывается калибровочными симметриями, являющимися различными представлениями групп Ли. Так, электромагнитное взаимодействие описываются калибровочной симметрий SU(1), слабое взаимодействие — калибровочной симметрией SU(2), сильное взаимодействие — калибровочной симметрией SU(3). Тот факт, что все известные физические взаимодействия имеют одну калибровочную природу, как бы сделаны «из одной болванки», вселяет надежду, что можно будет найти «единственный ключ ко всем известным замкам» и описать эволюцию Вселенной из состояния, представленного единым суперсимметричным суперполем, из состояния, в котором различия между типами взаимодействий, между всевозможными частицами вещества и квантами полей еще не проявлены. История же самодвижения Вселенной отмечена датами спонтанного нарушения симметрии, моментами, когда проявляется различие между типами физических взаимодействий, когда микрообъекты приобретают массы, заряды и другие характеристики, что, в конечном счете, приводит ко всему последующему многообразию физического мира.
Для обсуждения этих проблем остановимся вкратце на существующей в современной физике классификации элементарных частиц. При этом подчеркнем, что обсуждаемые нами выше взаимодействия и связанные с ними поля согласно квантовой теории поля — квантованы, то есть содержат соответствующие каждому конкретному полю кванты, посредством которых и осуществляются взаимодействия между частицами.
Физика до недавнего времени изучала материю в двух ее проявлениях — веществе и поле. Причем частицы вещества и кванты полей подчиняются разным квантовым статистикам и ведут себя различным образом. Так, частицы вещества являются ферми-частицами (фермионами). Системы тождественных ферми-частиц подчиняются стати-
228
стике Ферми—Дирака. Все фермионы имеют полуцелое значение некоторой очень важной квантовой характеристики элементарной частицы (не менее важной, чем заряд или масса), называемой спином. А для частиц с полуцелым значением спина справедлив принцип запрета Паули, согласно которому две тождественные частицы с полуцелым спином не могут находиться в одном и том же состоянии. Принцип Паули определяет образование электронных оболочек в атомах, поскольку в одном и том же состоянии на одном подуровне могут находиться только два электрона с противоположными спинами, что определяет закономерности периодической системы элементов Менделеева.
Все кванты полей являются бозе-частицами (бозонами) — частицами с целочисленным значением спина. Системы тождественных бозе-частиц подчиняются статистике Бозе-Эйнштейна. Принцип Паули для них несправедлив: в одном и том же состоянии может находиться любое число частиц. Так что бозе- и ферми-частицы рассматриваются как частицы, имеющие различную природу. В калибровочных теориях до недавнего времени это различие снять не удавалось, и физики констатировали факт разделения в настоящую эпоху эволюции Вселенной материи на два вида — вещество и поле.
Частицы вещества
В свою очередь, частицы вещества делятся на две группы — кварки и лептоны. Кварки и лептоны входят в состав других физических объектов и считаются при достигнутых на сегодняшний день энергиях «бесструктурными». Кварки — это частицы, которые, кроме электрического заряда, обладают цветным зарядом. Наличие у кварков цветного заряда обусловливает способность их к сильным взаимодействиям. Известно, что протон и нейтрон состоят из трех кварков. Однако принцип Паули здесь не нарушается, так как эти кварки имеют различные цветовые заряды. Заряд сильного взаимодействия назвали «цветом» именно по аналогии с действительными цветами для того, чтобы подчеркнуть, что смешение трех цветов кварков делает протон или нейтрон бесцветным (так же, как смешение красного, желтого и зеленого цветов даст белый цвет). Соответственно различают три заряда сильных взаимодей-
229
ствий — красный (R), желтый (Y) и зеленый (G). Лепто-ны — бесцветны и не участвуют в сильных взаимодействиях. Предполагается существование шести кварков и шести лептонов. При этом производится деление их на семейства трех поколений.
В столбце «Кварки» латинскими буквами обозначены различные ароматы кварков, индексами — цвета кварков. Название ароматов кварков: U — от английского слова up — вверх; d — от английского слова down — вниз; С — от английского слова charm — очарование; S — от английского слова strange — странный; t — от английского слова top — верхний; b — от английского слова botton — нижний.
Все вещество во Вселенной составлено из четырех частиц I (первого) поколения. Частицы второго (П) и третьего (III) поколения рассматриваются как возбужденные состояния частиц первого поколения в соответствии с их расположением в таблице. В настоящее время пока неизвестно, почему существует именно такое количество поколений частиц, и не существуют ли и другие, пока еще не откры-
230
тые семейства частиц? И почему до сих пор не наблюдались переходы между частицами разных поколений?
Все частицы участвуют в гравитационных и в слабых взаимодействиях. Так, например, действие слабых сил приводит к изменению природы частиц — превращению кварка одного аромата в кварк другого аромата, электрона в нейтрино и т. д. В электромагнитных взаимодействиях участвуют только те частицы, которые имеют электрический заряд. Известно, что кварки имеют дробный электрический заряд. Значит, они также участвуют в электромагнитных взаимодействиях, как и электрон. Нейтрино в электромагнитных взаимодействиях не участвуют. И, наконец, только кварки, обладающие цветным зарядом, способны к сильным взаимодействиям. Частицы, состоящие из кварков, называются адронами. Адроны делятся на два класса — барионы, в состав которых входят три кварка с различными цветами, и мезоны, состоящие из пары кварк — антикварк. Соответственно, антикварк имеет ан-тицветовой заряд. Таким образом, адроны, содержащие в себе цветные кварки, сами являются бесцветными. Барио-нами являются протоны и нейтроны — частицы, входящие в состав ядра атома. Протон состоит из двух u-кварков и одного d-кварка (р =uud); нейтрон состоит из одного и-кварка и двух d-кварков (n =udd). Протон имеет положительный электрический заряд, нейтрон является электрически нейтральной частицей. Ядра и электроны образуют атомы, а атомы — молекулы.
Следует сказать, что физика кварков открывает новую, необычную страницу в истории физики. С одной стороны, ничего нетрадиционного в поисках наиэлементарнейшего уровня в иерархии элементарных частиц и в связи с этим с гипотезой кварков нет. Но, с другой стороны, само поведение кварков несколько необычно, ибо они никогда не встречаются в свободном состоянии, а находятся в постоянном плену, заключены внутри адронов. В физике кварков сформулирована гипотеза конфайнмента (от англ. confinement — пленение), кварков внутри адронов, согласно которой невозможно вылетание свободного кварка из адрона. Несмотря на это необычайное обстоятельство, существование кварков как реальных частиц в физике надежно обосновано.
231
Кванты полей
Квантом гравитационного поля является гравитон. Однако гравитон пока не установлен экспериментально, равно как и не построена по сей день теория квантовой гравитации.
Квантом электромагнитного поля является фотонМасса покоя фотона равна 0. Фотон не несет на себе электрического заряда. Это обеспечивает линейный характер электромагнитных взаимодействий и большой радиус их действия.
Квантами слабого взаимодействия являются три бозона — W+, W-, Z0-бозоны. Верхние индексы указывают знак электрического заряда этих квантов. Кванты слабого взаимодействия имеют значительную массу, что приводит к тому, что слабое взаимодействие проявляется на очень коротких расстояниях.
Квантами сильного взаимодействия являются восемь глюонов. Свое название глюоны получили от английского слова glue (клей), ибо именно они ответственны за конфайнмент кварков. Массы покоя глюонов равны нулю. Однако глюоны обладают цветным зарядом, благодаря чему они способны к взаимодействию друг с другом, как говорят, к самодействию, что приводит к трудностям описания сильного взаимодействия математически ввиду его нелинейности. Если слабое взаимодействие ответственно за изменение ароматов кварков, то сильное взаимодействие, осуществляемое посредством обмена глюонами между кварками, приводит к изменению цветов кварков. Так что в ядре постоянно происходят превращения протонов в нейтроны и наоборот — за счет обмена квантами слабого взаимодействия между кварками, вследствие чего u-кварк превращается в d-кварк и наоборот. Кроме этого внутри протонов и нейтронов кварки постоянно меняют свои цвета, испуская и поглощая глюоны. При этом протоны и нейтроны остаются бесцветными. Подобная инвариантность требует существования поля сильного взаимодействия для поддержания цветовой симметрии кварков. Хвост сильного взаимодействия между кварками внутри протонов и нейтронов обеспечивает силы притяжения между протонами и протонами, протонами и нейтронами, нейтронами и нейтронами внутри ядра (ядерные силы).
232
Следует отметить, что взаимодействия, соответствующие калибровочной симметрии, характерны тем, что их величина определяется величиной заряда соответствующего взаимодействия. То есть заряд калибровочного взаимодействия одновременно определяет и величину заряда элементарной частицы, и величину («силу») самого взаимодействия, так называемую константу связи. В настоящую эпоху эволюции Вселенной константы связи различных взаимодействий соотносятся следующим образом:
где aS — константа связи сильного взаимодействия; аЕ — константа связи электромагнитного взаимодействия; aW — константа связи слабого взаимодействия; aG — константа связи гравитационного взаимодействия.
Современные физики считают, что такое соотношение существовало не всегда. Иными словами, рассматриваемые постоянные не являются постоянными. И существовала эпоха в эволюции Вселенной, когда эти константы были равны. А это означает, что не существовало различий между четырьмя типами физических взаимодействий. Именно это обстоятельство и стимулирует физиков в построении единой теории всех физических взаимодействий — единой теории поля. Однако для того, чтобы понять те физические идеи, на которых базируется построение этой теории, следует сказать, что в действительности физика рассматривает материю не в двух проявлениях — веществе и поле, как это отмечается во многих физических справочниках, словарях и энциклопедиях, а в трех проявлениях. Третьим качественно отличным от вышеназванных двух форм материи является физический вакуум. Дело в том, что все кванты полей, рассмотренные нами ранее, являются векторными калибровочными бозонами. Калибровочными их называют по той причине, что они являются квантами калибровочных полей. Векторными их называют потому, что все они имеют целочисленное значение спина, равного единице (1), за исключением гравитона, спин которого предполагается равным двум (2). Физический вакуум нашей Вселенной рассматривается как коллективные возбуждения хиггсо-вых скалярных бозонов, спин которых равен нулю (0). Именно физический вакуум является прародителем всех
233
частиц вещества и квантов полей, резервуаром, перекачка энергии из которого обеспечила их возникновение и функционирование. Способность вакуума в ходе эволюции Вселенной изменять свое состояние и привела к многообразию форм физического мира.
Составление представлений о структуре материи на разных этапах эволюции науки представлено ниже:
- Концепции современного естествознания
- I введение
- Раздел I научный метод
- 1.2. Эксперимент
- 1.3. Измерение
- 2.1.Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 3.1.Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1.1.Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2.1.Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1.1.Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.