logo search
Концепции современного естествознания

Методология естествознания

Если понять связи между процессами естествознания, то можно построить картину современного естествознания. Естествознание прошло несколько стадий: сбор естественнонаучной информации, затем её анализ. Стадия анализа уже некоторая составляющая методологии. Наука с ее развитием все более усложняется в методах.

Общеметодологические проблемы естествознания:

Методология естествознания ориентирована на решение главной проблемы, проблемы управляемого развития научного знания. Метод - это совокупность приемов и операций практического и теоретического освоения действительности. Метод вооружает исследователя системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владением методом означает знание того, каким образом, в какой последовательности совершать те или иные действия. Методология это область знания, занимающаяся изучением методов, оценкой их эффективности, сущности и применимости, методы научного познания принято подразделять по степени их общности, т.е. широте применимости в процессе научного исследования:

Эта трехступенчатая структура сообразуется с понятием системы. Эти методы по нисходящей, определяют разработку исследования от общего к частному, с использованием множества методов. Частнонаучные методы обычно вырабатываются применительно к конкретному исследованию, обычно в момент научной революции. Существует два уровня познания, это эмпирический и теоретический. На эмпирическом уровне используют наблюдение, эксперимент, измерение. На теоретическом уровне используют идеализацию и формализацию. А метод моделирования можно использовать на обоих уровнях. В модели надо учесть множество факторов и оптимизировать их. Моделирование чаще используется на теоретическом уровне, когда имеется уже много фактов, их надо обобщить, квалифицировать прогнозировать. Математические методы моделирования проникли во все науки.

Элементы структуры научного знания:

  1. Фактический материал или твердо установленный факт.

  2. Это результаты обобщения фактического материала выраженные в понятиях.

  3. Научные предположения (гипотезы).

  4. Нормы научного знания - это совокупность определенных, концептуальных и методологических установок, свойственных науке на каждом конкретно историческом этапе ее развития. Основной функцией является организация и регулирование процесса исследования. Выявление наиболее эффективных способов и путей решения проблемы. Смена этапов в науке приводит к изменению норм научного познания.

  5. Законы, принципы, теории.

  6. Стиль мышления, характеризуется двумя подходами (в основном) к рассмотрению объектов. Первое, это представление о простых динамических системах (это первый исторический тип мышления) и второе, это представление о сложных процессах, о самоорганизующихся системах.

Цель методологии - создать новые способы и методы для решения проблем современной науки. Проблема управляемого развития:

Признаки, отвечающие воззрениям классического естествознания (а)

Признаки современного естествознания (б)

Признаки а и б направлены на естественнонаучную картину мира (ЕНКМ)

ЕНКМ представляет жесткую систему, т.е. с четкими причинно-следственными связями. Процессы развития представлены как лавинообразный рост, в основе которого лежит поступательное движение без альтернатив.

Динамическая открытая система ЕНКМ. Процессы развития - "режим с обострением" и множественность путей развития.

С переходом на современном этапе естествознания к изучению больших и сложноорганизованных объектов (систем) прежние методы классического естествознания оказались не эффективными. Иначе, мир объектов предстал значительно более многообразным и сложным, чем ожидалось и те методы, которые позволяли изучить часть объектов и могли дать картину в статике, на современном этапе уже не могут быть применены. Сейчас мир понимается, как динамическая система, где компоненты взаимодействуют и приобретают новые качества. Для изучения такой системы выработан системный подход (системное исследование объектов). Основатель теории систем Берталанфи развил первую систему, это австрийский биолог теоретик, и системный подход стал впервые применяться в биологии. Основная задача общей теории систем состоит в том, чтобы найти совокупность законов, объясняющих поведение функционирование и развитие всего класса объектов как целого. Это направлено на построение целостной теоретической модели классов объектов. В классической науке бралась система, в ней были какие-то компоненты (здесь аналогия механики, все сводилось к движению внутри системы, все системы рассматривались как закрытые системы). Сегодня можно поставить такой вопрос, существуют ли изолированные системы в принципе, ответ отрицательный. Естественными системами в природе являются открытые термодинамические системы, которые обмениваются с окружающей средой энергией, веществом и информацией. Особенности системного подхода:

Эволюционно-синергетическая парадигма, создание такого подхода стало возможным на базе нового научного направления - синергетика. Синергетика - это наука о самоорганизации систем состоящих из множества подсистем самой различной природы. Тем самым подчеркивается универсальность этого методологического подхода, т.е. он применим в различных областях науки, в основе лежит понимание того, что в основе функциональных систем лежат сложные динамические системы самоорганизации. Другое определение синергетики - кооперация, сотрудничество, взаимодействие различных элементов систем. Движение развития науки, поднятие на новый качественный уровень связывали с НТР. Если мы говорим о развитии сложных систем, то всегда имеется точка бифуркации (к этому моменту подходит любая сложная система на своём развитии). От этой точки развитие может пойти вниз, а может вверх. Применительно к сложным системам в точке бифуркации необходимо применить немного сил, чтобы развитие пошло вверх.      РАЗВИТИЕ           /     \         Хаос   Порядок   Если раньше полагали, что развитие это только движение, и хаос воспринимали как жуткую бездну и не понимали, что есть взаимосвязь между хаосом и порядком. В результате скачка система приобретает новые свойства за счет внутренней упорядоченности (организации). Если говорить о твердых телах - это упорядоченность в структуре (кристаллическая решетка), таким образом, в природе мы тоже видим упорядоченность. Развитие порядка происходит через хаос. Выбор определяется и условиями внешнего воздействия на систему. Из точки бифуркации возможно два пути: переход к более высокой организации или разрушение системы (считай деградация). В науках есть критические точки развития, но есть нюанс, что в точке есть несколько путей выбора. Главный принцип в том, что если мы понимаем как развивается сложная система, не надо ей мешать, а при необходимости лишь слегка направить систему в нужном направлении. Положения из синергетического подхода:

С помощью каких законов можно описать объективные закономерности: с помощью динамических законов или статистических? Здесь возникает проблема соотношения законов. Другими словами речь идет: во-первых, о применимости законов, во-вторых, о соотношении законов, какие являются главными, а какие специальными. В рамках данной проблемы (соотношение законов) возникли два философских направления:

  1. Детерминизм - учение о причинной материальной обусловленности природных, социальных и психических явлений.

  2. Индетерминизм - учение, отрицающее какую-либо объективную причинную обусловленность явлений.

Соотносительно этим направлениям развивались физические теории. Динамические законы. Первая и такая теория, которая соотносилась с детерминизмом - динамическая. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи неких физических величин выраженных количественно. Исторически первой и простой явилась динамическая механика Ньютона. Лапласу принадлежит абсолютизация динамических закономерностей. Согласно его принципу все явления в мире детерминированы, т.е. предопределены необходимостью. А случайным явлениям и событиям, как объективной категории, не отводится никакого места. На определенной стадии развития таких законов возник вопрос о том, что динамические законы не единственные законы, что они не являются универсальными. Исторически это связано с изучением более сложных систем, а также со стремлением ученых проникнуть в глубь материи. Статистические законы. Наряду с динамическими законами действуют законы иного рода, предсказания которых являются не определенными, а вероятностными. Но детерминизм не уходит из науки, а вышеназванный подход называется вероятностным детерминизмом - вероятностное прогнозирование объективных закономерностей на основе вероятностных законов. Такие законы получили название статистических. Это значит, что предсказать событие можно не однозначно, а с определенной степенью вероятности. Здесь оперируют срединными величинами и усредненными значениями. Вероятностными эти законы называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются однозначными. Т.к. сама информация носит статистический характер, эти законы называют статистическими. Логика выявления этих законов принадлежит Максвеллу. Вероятность имеет объективный характер, это означает, что на фоне множества событий обнаруживается определенная закономерность, выражаемая определённым числом.