3.2. Аналогия и моделирование
Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.
Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта А и В. Известно, что объекту А присущи свойства P1 Р2,..., Рn, Рn+1. Изучение объекта В показало, что ему присущи свойства Р1 Р2,..., Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р1 Р2,..., Рn) у обоих объектов может быть сделано предположение о наличии свойства Рn+1 у объекта В.
Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании
36
которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.
Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами:
1) общие свойства должны быть любыми свойствами сравниваемых объектов, т. е. подбираться «без предубеждения» против свойств какого-либо типа; 2) свойство Рn+1 должно быть того же типа, что и общие свойства Р1 Р2,..., Рn; 3) общие свойства Р1 Р2, ..., Рn должны быть возможно более специфичными для сравниваемых объектов, т. е. принадлежать возможно меньшему кругу объектов; 4) свойство Рn+1, наоборот, должно быть наименее специфичным, т. е. принадлежать возможно большему кругу объектов.
Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда — прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).
«Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект — оригинал»8.
В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.
1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Дж. Максвеллом, силовые линии представ-
37
лялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью. Модель атома, предложенная Э. Резерфор-дом, напоминала Солнечную систему: вокруг ядра («Солнца») обращались электроны («планеты»). Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.
2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свой ственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называе мых «натуральных условиях». Пренебрежение результата ми таких модельных исследований может иметь тяжелые последствия. Поучительным примером этого является вошедшая в историю гибель английского корабля-броне носца «Кэптэн», построенного в 1870 году. Исследования известного ученого-кораблестроителя В. Рида, проведенные на модели корабля, выявили серьезные дефекты в его кон струкции. Но заявление ученого, обоснованное опытом с «игрушечной моделью», не было принято во внимание анг лийским Адмиралтейством. В результате при выходе в море «Кэптэн» перевернулся, что повлекло за собой гибель более 500 моряков.
В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т. п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т. д.
3. Символическое (знаковое) моделирование. Оно свя зано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знако вым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.) исследуемых объектов или, например, модели, пред ставленные в виде химической символики и отражающие
38
состояние или соотношение элементов во время химических реакций.
Особой и очень важной разновидностью символического (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т. п.). называется математической моделью явления.
Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (протекающих в модели; которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.
В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.
4. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью компьютера необходимо предварительное составление программы, которая выполняется затем элект-
39
ронной вычислительной машиной в виде последовательности элементарных математических и логических операций. В данном случае компьютер вместе с введенной в нее программой представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.
Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на компьютере различных вариантов ведется накопление фактов, что дает возможность в конечном счете произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.
Метод моделирования непрерывно развивается: на смену одним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость моделирования как метода научного познания.
Вопросы для самоконтроля
Как принято подразделять методы научного позна ния? В чем отличие всеобщих методов от общенаучных?
Какие условия необходимы для проведения научных экспериментов?
Что такое «естественная система единиц» в физике?
С чего всегда начинается процесс познания? Охарак теризуйте общую направленность научно-теоретического познания.
Что такое «идеализация» в естествознании? Раскрой те роль мысленного эксперимента в научно-теоретических исследованиях.
Что понимается под формализацией в научном по знании?
Чем язык современной науки отличается от обыч ного человеческого языка?
Назовите основные методы индукции.
В чем познавательная ценность метода аналогии?
10. Что такое моделирование в научном познании? На зовите известные вам виды моделирования.
40
Примечания
1 Павлов И.П. Полн. собр. соч. Т. II. Кн. 2. М.; Л., 1951. С. 274.
2 Капица ПЛ. Эксперимент, теория, практика. М., 1987. С.182.
3 Цит. по: Орнатский ПЛ. Теоретические основы ин-фор- мационно-измерительной техники. Киев, 1976. С. 7.
4 Маркс К., Энгельс Ф. Соч. Т. 20. С. 543-544.
5 Там же. С. 544.
6 Там же. С. 542-543.
7 Там же. С. 41.
8 Веников В А., Веников ГЛ. Теория подобия и модели рование. М., 1984. С. 8.
41
- Концепции современного естествознания
- I введение
- Раздел I научный метод
- 1.2. Эксперимент
- 1.3. Измерение
- 2.1.Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 3.1.Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1.1.Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2.1.Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1.1.Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.