logo search
КСЕ

Квантовая механика

Наибольший успех теория Бора имела применительно к атому водорода, .для которого оказалось возможным построить количественную теорию спектра.

Однако построить количественную теорию для следующего за водородом атома гелия на основе боровских представлений не удалось. Относительно атома гелия и более сложных атомов теория Бора позволяла делать лишь качественные (хотя и очень важные) заключения.

Теория Бора является половинчатой, внутренне противоречивой. С одной стороны, при построении теории атома водорода использовались обычные законы механики Ньютона и давно известный закон Кулона, а с другой — вводились квантовые постулаты, никак не связанные с механикой Ньютона и электродинамикой Максвелла. Введение в физику квантовых представлений требовало радикальной перестройки как механики, так и электродинамики. Эта перестройка была осуществлена в начале второй четверти нашего века, когда были созданы новые физические теории: квантовая механика и квантовая электродинамика.

Постулаты Бора оказались совершенно правильными. Но они выступали уже не как постулаты, а как следствия основных принципов этих теорий. Правило же квантования Бора, как выяснилось, применимо далеко не всегда.

Представление об определенных орбитах, по которым движется электрон в атоме Бора, оказалось весьма условным. На самом деле движение электрона в атоме имеет очень мало общего с движением планет по орбитам. Если бы атом водорода в наинизшем энергетическом состоянии можно было бы сфотографировать с большой выдержкой, то мы увидели бы облако с переменной плотностью. Большую часть времени электрон проводит на определенном расстоянии от ядра.

В настоящее время с помощью квантовой механики можно ответить на любой вопрос, относящийся к строению и свойствам электронных оболочек атомов. Но количественная теория оказывается весьма сложной, и мы ее касаться не будем. С качественным описанием электронных оболочек атомов вы знакомились в курсе химии.

Лазеры

В 1917 г. Эйнштейн предсказал возможность так называемого индуцированного (вынужденного) излучения света атомами. Под индуцированным излучением понимается излучение возбужденных атомов под действием падающего на них света. Замечательной особенностью этого излучения является то, что возникшая при индуцированном излучении световая волна не отличается от волны, падающей на атом, ни частотой, ни фазой, ни поляризацией.

На языке квантовой теории вынужденное излучение означает переход атома из высшего энергетического состояния в низшее, но не самопроизвольно, как при обычном излучении, а под влиянием внешнего воздействия.

Еще в 1940 г. советский физик В. А. Фабрикант указал на возможность использования явления вынужденного излучения для усиления электромагнитных волн. В 1954 г. советские ученые Н. Г. Басов и А. М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцированного излучения для создания микроволнового генератора радиоволн с длиной волны ==1,27 см. За разработку нового принципа генерации и усиления радиоволн Н. Г. Басову и А. М. Прохорову была в 1959 г. присуждена Ленинская премия. В 1963 г. Н. Г. Басов, А. М. Прохоров и Ч. Таунс были удостоены Нобелевской премии.

В 1960 г. в CШA был создан первый лазер — квантовый генератор электромагнитных волн в видимом диапазоне спектра.

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:

1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10~5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.

2. Свет лазера обладает исключительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.

3. Лазеры являются самыми мощными источниками света. В узком интервале спектра кратковременно (в течение промежутка времени продолжительностью порядка 10~13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2, в то время как мощность излучения Солнца равна только 7-103 Вт/см2, причем суммарно по всему спектру. На узкий же интервал =10~6 см (ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома. В обычных условиях большинство атомов находится в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся. При прохождении электромагнитной волны сквозь вещество ее энергия поглощается. За счет поглощенной энергии волны часть атомов возбуждается, т. е. переходит в высшее энергетическое состояние.

Существуют различные методы получения среды с возбужденными состояниями атомов. В рубиновом лазере для этого используется специальная мощная лампа. Атомы возбуждаются за счет поглощения света.

Но двух уровней энергии для работы лазера недостаточно. Каким бы мощным ни был свет лампы, число возбужденных атомов не будет больше числа невозбужденных. Ведь свет одновременно и возбуждает атомы, и вызывает индуцированные переходы с верхнего уровня на нижний.

В газовых лазерах этого типа рабочим веществом является газ. Атомы рабочего вещества возбуждаются электрическим разрядом.

Применяются и полупроводниковые лазеры непрерывного действия. Они созданы впервые в нашей стране. В них энергия для излучения заимствуется от электрического тока.

Созданы очень мощные газодинамические лазеры непрерывного действия на сотни киловатт. В этих лазерах “перенаселенность” верхних энергетических уровней создается при расширении и адиабатном охлаждении сверхзвуковых газовых потоков, нагретых до нескольких тысяч кельвин.