4.3.2. Физика микромира и мегамира. Атомная физика
Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX века ученые считали, что:
химические атомы каждого элемента неизменны, и су ществуют столько сортов атомов, сколько известно хи мических элементов (в то время - примерно 70);
атомы данного элемента одинаковы;
атомы имеют вес, причем различие атомов основано на различии их веса;
взаимный переход атомов данного элемента в атомы другого элемента невозможен.
В конце XIX — начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представления о строении материи. Открытие электрона (1897г.), затем протона, фотона и нейтрона показали, что атом имеет сложную структуру. Исследование строения атома становится важнейшей задачей физики XX века.
После открытия электрона, протона, фотона и, наконец, в 1932 году нейтрона было установлено существование большого числа новых элементарных частиц. В том числе: позитрон, (античастица электрона); мезоны — нестабильные микрочастицы; различного рода гипероны — нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10-22-10-24 с); нейтрино — стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино — античастица нейтрино, отличающаяся от нейтрино знаком леп-тонного заряда, и др.
В характеристике элементарных частиц существует еще одно важное представление — взаимодействие.
Различают четыре вида взаимодействия.
Сильное взаимодействие (короткодействующее, радиус действия около 10-13 см) связывает между собой нуклоны (протоны и нейтроны) в ядре; именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.
Электромагнитное взаимодействие (дальнодействующее, радиус действия не ограничен) определяет взаимодействие между электронами и ядрами атомов или молекул; взаи-
93
модействующие частицы имеют электрические заряды; проявляется в химических связях, силах упругости, трения.
Слабое взаимодействие (короткодействующее, радиус действия меньше 10-15 см), в котором участвуют все элементарные частицы, обусловливает взаимодействие нейтрино с веществом.
Гравитационное взаимодействие — самое слабое, не учитывается в теории элементарных частиц; распространяется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах.
Элементарные частицы в настоящее время обычно разделяют на следующие классы:
Фотоны — кванты электромагнитного поля, части цы с нулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.
Лептоны (от греч. leptos — легкий), к числу которых относятся электроны, нейтрино; все они не обладают силь ным взаимодействием, но участвуют в слабом взаимодей ствии, а имеющие электрический заряд — также и в элект ромагнитном взаимодействии.
Мезоны — сильно взаимодействующие нестабильные частицы.
Барионы (от греч. barys — тяжелый), в состав кото рых входят нуклоны (нестабильные частицы с массами, большими массы нейтрона), гипероны, многие из резонансов.
Сначала, особенно когда число известных элементарных частиц ограничивалось электроном, нейтроном и протоном, господствовала точка зрения, что атом состоит из этих элементарных «кирпичиков». А дальнейшая задача в исследовании структуры вещества заключается в том, чтобы разыскивать новые, еще не известные «кирпичики», из которых состоит атом, и в определении того, не являются ли эти «кирпичики» (или некоторые из них) сами сложными частицами, построенными из еще более тонких «кирпичиков».
Однако действительная картина строения вещества оказалась еще более сложной, чем можно было предполагать. Оказалось, что элементарные частицы могут претерпевать взаимные превращения, в результате которых некоторые из них исчезают, а некоторые появляются. Нестабильные микрочастицы распадаются на другие, более стабильные, но это вовсе не значит, что первые состоят из вто-
94
рых. Поэтому в настоящее время под элементарными частицами понимают такие «кирпичики» Вселенной, из которых можно построить все, что нам известно в природе.
Приблизительно в 1963-1964 годах появилась гипотеза о существовании кварков — частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействующими и по этому свойству объединенными общим названием адронов. Кварки имеют весьма необычные свойства: обладают дробными электрическими зарядами, что не характерно для других микрочастиц, и, по-видимому, не могут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигает уже нескольких десятков.
Основные положения современной атомистики могут быть сформулированы следующим образом:
1) атом является сложной материальной структурой, представляет собой мельчайшую частицу химического элемента;
у каждого элемента существуют разновидности атомов (содержащиеся в природных объектах или искусственно синтезированы);
атомы одного элемента могут превращаться в атомы другого; эти процессы осуществляются либо самопроиз вольно (естественные радиоактивные превращения), либо искусственным путем (посредством различных ядерных реакций).
Таким образом, физика XX века давала все более глубокое обоснование идеи развития.
Астрофизика. Релятивистская космология.
Современная космология начала складываться в 20-е годы XX века на основе созданной Эйнштейном общей теории относительности. Из этой теории следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, — релятивистская. Еще в 1922 году советский математик и геофизик А.А. Фридман нашел решение уравнений общей теории относительности для замкнутой расширяющейся Вселенной. Он установил, что искривленное пространство не может быть стационарным: оно должно или расширяться, или сжиматься.
95
Уравнения Фридмана теоретически обосновали нестационарность Вселенной. На этот вывод ученые не обращали внимание вплоть до открытия американским астрономом Эдвином Хабблом (1889-1953) в 1929 году так называемого «красного смещения». Дело в том, что еще в XIX веке австрийский физик и астроном Кристиан Доплер обнаружил, что если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется — в сторону более длинных (красных) волн. Это явление было названо эффектом Доплера. Э. Хаббл открыл «красное смещение» для всех далеких источников .света. Красное смещение оказалось пропорциональным расстоянию до источника, что подтверждало гипотезу о расширении видимой части Вселенной. Тем самым теоретически построенные Фридманом модели нестационарной Вселенной были обоснованы результатами наблюдений.
Существует два различных типа моделей Фридмана.
Если средняя плотность материи во Вселенной меньше некоторой критической величины или равна ей, то тогда Вселенная должна быть пространственно бесконечной. В этом случае современное расширение Вселенной будет продолжаться всегда.
В то же время, если плотность материи во Вселенной больше той же критической величины, тогда гравитационное поле, порожденное материей, искривляет Вселенную, замыкая ее на себя. Вселенная в этом случае конечна, хотя и не ограничена, вроде поверхности сферы. Гравитационные поля достаточно сильны для того, чтобы в конце концов остановить расширение Вселенной, так что рано или поздно она начнет снова сжиматься к состоянию бесконечно большой плотности.
В 1965 году американские ученые-астрономы А. Пен-зиас и Р. Вилсон сделали с помощью радиотелескопа — устройства, предназначенного для приема радиоизлучения космических объектов, — открытие большой важности. Они установили, что во Вселенной имеется так называемое фоновое радиоизлучение, названное советским ученым И.С. Шкловским реликтовым. Реликтовое радиоизлучение образовалось на раннем этапе существования Вселенной, когда ей было всего около 3 млрд. лет.
96
Два экспериментально установленных положения — расширение Вселенной и реликтовое излучение — являются убедительными доводами в пользу так называемой теории «большого взрыва», ставшей теперь общепризнанной.
До утверждения этой теории существовала теория стационарного состояния, согласно которой Вселенная всегда была почти такой, какой мы видим ее сейчас. В XVIII-XIX веках и даже в первой половине XX века в астрономии господствовал взгляд на Вселенную как на нечто статическое, не изменяющееся.
Основываясь на теории расширяющейся Вселенной, оказалось возможным проследить развитие Вселенной в «обратную сторону», т. е. попробовать вернуться возможно дальше назад. Хотя осуществить такую реконструкцию было далеко не просто, но все же она оказалась успешной.
По современным представлениям, вначале был взрыв. Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру порядка 100 млрд. градусов К (1011 К). При такой высокой температуре (выше температуры центра самой горячей звезды) молекулы, атомы и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 секунды после взрыва, несмотря на очень высокую температуру, была огромной: в 4000 миллионов раз больше, чем у воды.
В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд. градусов (109 К). Плотность вещества также снизилась, но еще была близкой к плотности воды. При этой, хотя и очень высокой, температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода (дейтерия) и ядра гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия. Силы гравитации превращали газ в сгустки, ставшие материалом для возникновения галактик и звезд.
Как следует из сказанного, за последние примерно 50 лет достигнуты значительные результаты в изучении звезд, галактик и даже Вселенной и их эволюции.
4. Зак 671 97
- Концепции современного естествознания
- I введение
- Раздел I научный метод
- 1.2. Эксперимент
- 1.3. Измерение
- 2.1.Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 3.1.Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1.1.Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2.1.Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1.1.Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.